

JBA consulting

Ellon Flood Protection Study Hydrology Report

Final Report April 2018

Aberdeenshire Council

W L I D

JBA Project Manager

Caroline Anderton BSc MSc CEnv CSci MCIWEM C.WEM Unit 2.1 Quantum Court Research Avenue South Heriot Watt Research Park Riccarton Edinburgh EH14 4AP

Revision History

Revision Ref / Date Issued	Amendments	Issued to
P01 / 23 March 2018	-	Alistair Scotland and Lee Watson, Aberdeenshire Council
P02 / 19 April 2018	Table 4-6 to Table 4-9 amended; text added on page 12 and amended on page 25	Alistair Scotland and Lee Watson, Aberdeenshire Council
C01 / 03 April 2019	Published.	Alistair Scotland and Lee Watson, Aberdeenshire Council

Contract

This report describes work commissioned by Gavin Penman, on behalf of Aberdeenshire Council, on 10 October 2017 by Purchase Order Number 1095192. Dougall Baillie's representative for the contract was Scott Macphail and Aberdeenshire Council's representative for the contract was Alistair Scotland. Grace Thompson, Briony McIntosh, David Cameron and Caroline Anderton of JBA Consulting carried out this work.

Prepared by	Briony McIntosh MEarthSci Assistant Analyst
Prepared by	Grace Thompson BSc MSc Assistant Analyst
Reviewed by	David Cameron BSc PhD MCIWEM CWEM CSci Principal Analyst
Reviewed by	Caroline Anderton BSc MSc CEnv CSci MCIWEM C.WEM Technical Director

Purpose

This document has been prepared as a Final Report for Aberdeenshire Council. JBA Consulting accepts no responsibility or liability for any use that is made of this document other than by the Client for the purposes for which it was originally commissioned and prepared.

JBA Consulting has no liability regarding the use of this report except to Aberdeenshire Council.

JBA

Acknowledgements

JBA wishes to thank SEPA for provision of the hydrometric data and Aberdeenshire Council for the supply of data.

Copyright

© Jeremy Benn Associates Limited 2019

Carbon Footprint

A printed copy of the main text in this document will result in a carbon footprint of 313g if 100% postconsumer recycled paper is used and 399g if primary-source paper is used. These figures assume the report is printed in black and white on A4 paper and in duplex.

JBA is aiming to reduce its per capita carbon emissions.

Executive Summary

This report describes historical flooding and the input hydrology estimates developed for use in the Ellon Flood Protection Study for Aberdeenshire Council. The Ythan has a history of flooding dating back to at least 1642 and the main risk area is at Ellon. In addition to direct flood risk from the fluvial Ythan, flood risk at Ellon is complicated by a tidal influence and by four small watercourses (the Broomies, Modley, Hillhead and Fortree Burns). Hydrology estimates were therefore required as input to a linked 1D/2D hydraulic model of the Ythan for use in flood mapping. Those estimates included the following.

- Peak flow estimates on the:
 - **River Ythan at Ellon** gauging station. FEH statistical methods were investigated for peak flow estimation and the adopted method was Single Site (SS) analysis with a Generalised Logistic (GL) distribution using an extended AMAX series with data transfer from the Ardlethen gauge. A new rating, agreed with SEPA for use in this study, was applied to the Ellon data, prior to the analysis being undertaken. The 0.5% Annual Probability (AP, 200 year flood) was estimated to be circa 212.22 m³/s for the Ythan.
 - Modley Burn, Broomies Burn, Hillhead Burn and Fortree Burn at their confluence with the River Ythan. A variety of methods were investigated for peak flow estimation, and the adopted method in each case was the FEH Rainfall Runoff method (on the basis of the FEH Rainfall Runoff method yielding similar time to peak values as those calculated from observed data at the nearest small catchment gauge, the level only gauge at Mill of Keithfield). The 0.5% Annual Probability (AP, 200 year flood) flood was estimated to be 4.90 m³/s, 3.09 m³/s, 0.81 m³/s and 2.34 m³/s for the Broomies, Modley, Hillhead and Fortree Burns respectively using their default critical storm durations (these will be adjusted during model runs). With respect to modelling for design events, the peak flows from the FEH Rainfall Runoff method will be used to scale hydrographs derived from ReFH units within the model.
- Fluvial hydrographs and critical storm durations. As there is a gauge on the Ythan at Ellon, a design hydrograph for the Ythan was derived from observed data for design model runs. This was based on the November 2009 event in order to avoid double peaked effects. For design model runs, this hydrograph will be scaled to the FEH statistical estimates. The Ythan and burns have very different catchment areas and it is recommended that two critical durations be tested in the hydraulic modelling: one long (17 h, based on the Ythan) and one short (6.75 h, based on the Modley and Broomies Burn). The Hillhead and Fortree Burns will be modelled separately.
- **Coastal still water levels for the tidal element**. These were obtained from the Coastal Flood Boundary method for the nearest estuary CFBD data point. The 0.5% AP (200 year) event was estimated to be 3.18 mAOD.
- **Tidal stage hydrograph**. This was derived from a representative event at the Aberdeen tide gauge.
- Joint probability. The joint probability between flow on the Ythan at Ellon and surge on the Ythan estuary was considered using the published FD2308 approach. A local chi value was also calculated between Aberdeen and Ellon and was found to be similar to the published value, showing a low correlation between flow and surge.

Contents

Execu	itive Summary	iii
1	Introduction	1
1.1 1.2	Report objectives and approach Catchment summary and relevant hydrometry	1 1
2	Flood History	6
2.1 2.2	Introduction Previous Flood Estimates	6 9
3	Flood Estimation: River Ythan and Overall Approach	
3.1 3.2 3.3 3.4	Peak Flows: overall approach River Ythan Flood Estimation River Ythan Observed Event Analysis: design hydrographs River Ythan Observed Event Analysis: tidal influence	
4	Flood Estimation: Modley, Broomies, Fortree and Hillhead Burns	29
4.1 4.2	Peak flows: overall approach Lateral inflows for modelling of the Ythan	29 34
5	Comparison between the 2005, 2010 and 2018 studies	
6	Conclusions	
Apper	ndices	I
А	Statistical Method - Additional Outputs	I
В	ReFH2 Additional Outputs	XXIII
С	Ellon AMAX	XXVII
D	Technical Review Certificate	XXVIII
Е	Ellon Gauging Station and 2016 Flooding	xxxIII

List of Figures

Figure 1-1: Catchment and hydrometry	. 5
Figure 2-1: Key flood events in Ellon	. 8
Figure 3-1: AMAX series at Ellon	. 19
Figure 3-2: Extended AMAX series at Ellon	. 19
Figure 3-3: Growth curves for the extended Ellon record	. 20
Figure 3-4: SS and ESS growth curves for the extended record at Ellon with SS GL 95% confidence limits	。 . 20
Figure 3-5: SS and ESS growth curves for the extended record at Ellon with SS GEV 95 confidence limits	5% .21
Figure 3-6: Normalised hydrographs for the top 10 events at Ellon	. 23
Figure 3-7: November 2009 storm duration analysis	. 23
Figure 3-8: Observed November 2009 hydrograph at Ellon scaled to the SS GL 200 yea peak flow.	ar . 24
Figure 3-9: River Level and Tidal Data - River Ythan at Ellon	. 25
Figure 3-10: Design Tidal Levels	. 27

List of Tables

Table 1-1:	Catchment descriptors	2
Table 1-2:	Catchment hydrometry summary information	3
Table 2-1:	Flood history	6
Table 2-2:	Peak flow estimates from the 2005 and 2010 JBA studies	9
Table 3-1:	Ellon AMAX series	13
Table 3-2:	Peak flow estimates: statistical estimates for the Ythan at Ellon	14
Table 3-3:	Extended Ellon AMAX series (transfer from Ardlethen)	15
Table 3-4:	Peak flow estimates: statistical estimates for the extended Ythan at Ellon reco with adjusted catchment area	ord 17
Table 3-5:	Peak flow estimates: confidence limits for the extended Ythan at Ellon	18
Table 3-6:	Peak flow estimate comparison between the 2005 and 2010 reports and the extended Ellon record excluding the 2016 event	18
Table 3-7:	Design Tide Levels	26
Table 3-8:	Joint probability matrix calculated using the published χ value of 0.01	28
Table 4-1:	Storm duration comparison at Mill of Keithfield	30
Table 4-2:	Broomies Burn with adjusted area peak flow comparison	30
Table 4-3:	Modley Burn with adjusted area peak flow comparison	31
Table 4-4:	Hillhead Burn with adjusted area peak flow comparison	31
Table 4-5:	Fortree Burn with adjusted area peak flow comparison	32
Table 4-6:	RR peak flow estimates for the Broomies Burn for the three storm durations	32
Table 4-7:	RR peak flow estimates for the Modley Burn for the three storm durations	33
Table 4-8:	RR peak flow estimates for the Hillhead Burn for the three storm durations	33
Table 4-9:	RR peak flow estimates for the Fortree Burn for the three storm durations	34
Table 5-1:	Comparison with 2005 and 2010 estimates	35
Table 6-1:	Summary of design peak flows	37

Abbreviations

1D	One Dimensional (modelling)
2D	Two Dimensional (modelling)
ALTBAR	Mean catchment altitude (m above sea level)
AMAX	Annual Maximum
ARF	Areal Reduction Factor
BFIHOST	Base Flow Index estimated from soil type
CWI	Catchment Wetness Index
DPLBAR	Index describing catchment size and drainage path configuration
FARL	FEH index of flood attenuation due to reservoirs and lakes
FEH	Flood Estimation Handbook
FPEXT	FEH index describing floodplain extent
FRA	Flood Risk Assessment
GEV	General Extreme Value Distribution
GL	General Logistic Distribution
mAOD	metres Above Ordnance Datum
NGR	National Grid Reference
NNR	National Nature Reserve
OS	Ordnance Survey
OS NGR	Ordnance Survey National Grid Reference
QMED	Median Annual Flood (with return period 2 years)
ReFH	Revitalised Flood Hydrograph method
RR	Rainfall-Runoff
SAAR	Standard Average Annual Rainfall (mm)
SCF	Spreadsheet compatible format (file from Hydrolog)
SEPA	Scottish Environment Protection Agency
SPR	Standard percentage runoff
SPRHOST	Standard percentage runoff estimated from soil type
SSSI	Site of Special Scientific Interest
TBR	Tipping Bucket Raingauge
Тр	Time to Peak
URBEXT	FEH index of fractional urban extent
Ζ	Reflectivity

1 Introduction

1.1 Report objectives and approach

The purpose of this report is to provide details of the hydrology required to drive the hydraulic modelling and associated flood mapping for the River Ythan between Ardlethen at Ordnance Survey National Grid Reference (OS NGR) NJ 923 310 and downstream of the A90 road bridge, OS NGR NJ 986 300. Peak flow estimates and hydrological analysis were required for the following watercourses (Figure 1-1):

- The River Ythan at the upstream boundary of the model (near Bridge of Ardlethen) and the downstream model boundary (east of the A90 road bridge).
- The River Ythan at Ellon gauging station.
- The Broomies Burn, Modley Burn, Hillhead Burn and Fortree Burn at their confluence with the River Ythan.
- In addition, the Burn of Keithfield was important for storm duration analysis for the small burn catchments.
- The River Ythan is tidally influenced from approximately 600 m upstream of the A90 road bridge, therefore coastal water levels, together with consideration of joint probability were required.

FEH Statistical and a variety of Rainfall Runoff alternatives were explored for peak flow estimation. The recommended values are provided within the main body of the report with supplementary information provided in the Appendix.

The hydrographs required for the hydraulic modelling will utilise a design hydrograph derived from the Ellon gauge for the Ythan, and ReFH hydrographs for the burns. These hydrographs will be scaled to the peak flows recommended in this report. This will be undertaken within the modelling software at the modelling stage.

1.2 Catchment summary and relevant hydrometry

The catchment draining to Ellon covers a total area of approximately 550 km² (to the A90 road bridge) and is traversed by a number of watercourses. The River Ythan is the primary watercourse which originates north of the Grampian Mountains at Ythanwells, approximately 30 km northwest of Ellon. The river flows first north then southeast towards Ellon discharging into the North Sea approximately 10 km downstream of the town. The River Ythan is tidally influenced at the downstream extent of Ellon with the National Tidal Limit (NTL) being approximately 600 m upstream of the A90 road bridge. The Ythan estuary is a Site of Special Scientific Interest (SSSI) and is part of the Forvie National Nature Reserve (NNR). A number of tributaries discharge into the River Ythan with the Modley Burn and Broomies Burn on the left bank, and the Fortree Burn and Hillhead Burn on the right bank of the Ythan being key subcatchments of interest (Figure 1-1). Historical flooding on the Ythan has been recorded since at least 1642¹. There are no formal or informal flood defences in the area.

Elevation ranges from approximately 300 meters above Ordnance Datum (mAOD) at the headwaters of the River Ythan to sea level at Ellon. Average annual rainfall is approximately 826 mm (catchment descriptors derived from the FEH CD-ROM² for the River Ythan at Ellon gauging station, listed in Table 1-1). The catchment is predominantly rural (URBEXT₂₀₀₀ of 0.002) with localised urban areas (URBEXT₂₀₀₀ of 0.055 for the Fortree Burn). The underlying bedrock geology is metamorphic psammite and pelites with areas of igneous intrusions, overlain by superficial glacial deposits, alluvium and small areas of peat³. The overall catchment is therefore dominated by relatively impermeable bedrock and superficial deposits, and will therefore exhibit a moderately rapid response to rainfall as reflected in the catchment BFIHOST (Baseflow Index based on soil type) of 0.62 and SPRHOST (Standard percentage runoff based on soil type) of c. 28%.

¹ Minot, C. 1887. The Great Floods of August 1829 in the Province of Moray and Adjoining Districts. https://archive.org/stream/greatfloodsaugu00laudgoog#page/n1/mode/2up/search/ythan [Accessed: March 2018]

² The FEH CD-ROM v3 was used as the primary source of catchment descriptor information throughout this study. FEH13 rainfall information was obtained from the FEH Webservice.

³ British Geological Survey http://mapapps.bgs.ac.uk/geologyofbritain/home.html [Accessed: December 2017]

Tipping bucket raingauges (TBR) within the catchment include Esslemont House, Fyvie Castle and Rothienorman. Additional manual raingauges include Cairnorrie, Haddow House and Meldrum House (Table 1-2). HiFlows-UK gauging stations include the Ythan at Ellon (10003) which replaced the Ythan at Ardlethen (10001, located c. 3 km upstream of Ellon) in 1982. A level only gauge, the Mill of Keithfiled located on the Burn of Keithfield, and was used in basic LAG analysis to inform time to peak (Tp) and storm durations for the smaller subcatchments at Ellon. A summary of the catchment and its hydrometry is provided in Table 1-2 and Figure 1-1.

Table	1-1:	Catchment	descriptors
-------	------	-----------	-------------

Catchment descriptors	River Ythan at Ellon Gauging Station	Modley Burn	Broomies Burn	Fortree Burn	Hillhead Burn	Mill of Keithfield
AREA (km²)	533.77 adjusted (532.15 default)	3.62 adjusted (3.75 default)	6.13 adjusted (5.78 default)	2.067 adjusted (2.123 default)	0.713 adjusted (2.123 default)	18.36 default
ALTBAR (m above sea level)	108	52	56	45	45	112
BFIHOST	0.62	0.547	0.514	0.562	0.562	0.587
DPLBAR (km)	24.92	2.48	3.05	36.2	36.2	3.55
FARL	0.993	1	1	1	1	0.998
FPEXT	0.0469	0.1117	0.0909	0.0789	0.0789	0.0415
FPDBAR	0.406	0.593	0.601	0.367	0.367	0.332
SAAR (mm)	826	769	770	752	752	831
SAAR4170 (mm)	857	819	821	785	785	819
SPRHOST (%)	27.83	28.78	31.64	28.98	28.98	28.82
URBEXT 1990	0.002 adjusted (0.0015 default)	0.022 adjusted (0.020 default)	0.0002 adjusted (0.0002 default)	0.061 adjusted (0.057 default)	0.061 adjusted (0.057 default)	0.0003 adjusted (0.0003 default)
URBEXT 2000	0.002 adjusted (0.0024 default)	0.029 adjusted (0.028 default)	0.001 adjusted (0.001 default)	0.063 adjusted (0.061 default)	0.063 adjusted (0.061 default)	0.0001 adjusted (0.0001 default)

Chattan	Motor	Nerre	T	Deviation	0
number	watercourse	Name	Гуре	of record	Comments
				(water years)	
10003	Ythan	Ellon	Primary	1983 - present	The gauge at Ellon is located in an open channel section (with cableway) of the River Ythan c. 20 m upstream of a large arched bridge (a former railway bridge and now the Formartine and Buchan Way). The stilling well is located in the gauging hut on the right bank and provides telemetered level data in real time. Replacement for the Ythan at Ardlethen (10001). Small amounts of bypassing on LB during extreme flows. A new rating was developed for Ellon using hydraulic modelling in 2018. The new rating has been applied to the AMAX record above a stage of 2.98 m.
10001	Ythan	Ardelthen	Primary	1939 - 1985	Station closed in 1982 and was replaced by the Ythan at Ellon (10003). The gauge was located in an open channel section with cableway upstream of the Bridge of Ardlethen. The bridge was a partial high flow control. Weed growth produced a variable rating in summer ⁴ . Previous regression analysis by Andrew Black, Dundee University and previously supplied by SEPA ⁵ means flows at Ardlethen can be transferred to Ellon gauging station thus extending the period of record at Ellon.
	Keithfield Burn	Mill of Keithfield	Primary	2009 - present	Used in basic LAG analysis to inform storm duration. Level only, non-cableway site. Suffers from weed issues during the

Table 1-2: Catchment hydrometry summary information

4 NRFA http://nrfa.ceh.ac.uk/data/station/info/10001 [Accessed February 2018]

⁵ Email communication between Caroline Anderton (JBA) and Derek Fraser (SEPA), 18 February 2005. Project: 2005s1059 Ellon Flood Study Final.

				summer months. Ratings under review ⁶ .
	Rothienorman	Tipping Bucket raingauge	2001 - present	15 minute recording rainfall. Used in basic LAG analysis to inform storm duration at both Mill of Keithfield and the Ythan at Ellon. No information on quality provided by SEPA.
	Esslemont House	Tipping Bucket raingauge	2008 - present	15 minute recording rainfall. Will be used in model calibration for the Ellon tributaries. No information on quality provided by SEPA.
Ythan	Ellon (A90 road bridge)	Water level logger	February 2006 - July 2006	Water level logger installed during previous JBA Ellon Flood Study ¹⁰ . Purpose was to determine a relationship between the tide gauge at Aberdeen for which there is an extensive historical record, and use this relationship to adjust the extreme sea level data (Proudman Oceanoraphic Laboratory) for Aberdeen to create extreme sea level values for the River Ythan at Ellon

⁶ Email correspondence with Danni Murren, SEPA, 9 January 2018.

Figure 1-1: Catchment and hydrometry

Contains Ordnance Survey (C) Crown copyright and database right 2018

2 Flood History

2.1 Introduction

The River Ythan has been susceptible to flooding over the past several decades with the earliest recorded flooding occurring in 1642 (Table 2-1). Ellon falls within Potentially Vulnerable Area (PVA) 06/12. The greatest risk is from the River Ythan in addition to the Broomies Burn and Modley Burn. This section will discuss the details of key flood events, as well as the impacts these events have caused based upon a review of the SEPA Flood Risk Management Strategy (FRMS), in addition to other readily available sources of information such as the British Hydrological Society Chronology of British Hydrological Events (CBHE). The major events are summarised in Table 2-1. Historical flood information is considered in the flood estimation as described in Section 3.

The largest recorded flooding since records began occurred in January 2016 with a stage of 4.4 m recorded at the Ellon gauging station.

Table 2-1: Flood history

Date	Description	Source
1642	'Ythan grew so great that it drowned out the fires in some men's houses in Ellon and Newburgh, far beyond the wonted course, many thinking this to be prodigious tokens.'	The Great Floods of August 1829 in the Province of Moray and Adjoining Districts ¹ [https://archive.org/stream/g reatfloodsaugu00laudgoog# page/n6/mode/2up accessed: March 2018]
1829	'the recent flood hereabouts seems to have exceeded that of 1768 by fully 2 feet'	The Great Floods of August 1829 in the Province of Moray and Adjoining Districts ¹ [https://archive.org/stream/g reatfloodsaugu00laudgoog# page/n6/mode/2up accessed: March 2018]
21/07/1893	1893 July 21 p[22]: "Thunderstorms and very heavy rain, producing floods at Fraserburgh and Banff, in the N.E. of Scotland."	CBHE ⁷
08/02/1894	1894 August 2 p[21]: "along the Don and Ury many fields were swept clean of all their crops, also along the Ythan in Buchan."	CBHE ⁷
08/05/1913	1913 May 8-11 Rainfall observer at House of Schivas noted (p[14]) "Rain 3.10 in. causing the highest flood in the river remember in May."	CBHE ⁷
08/05/1913	1913 May 8-11 Observer, Haddo, at Ellon (house of Schivas), Aberdeenshire, noted p[59] "The river Ythan was in greater flood than seen for many years in May, when 3.1 fell from 8th to 11th inclusive"	CBHE ⁷
06/11/1951	2.78 m recorded at Ardlethen gauging station (10001) highest recorded stage within the Ardlethen series (1940-1984)	SEPA hydrometric data
1986	River Ythan flooding across the floodplain with photographs from Ellon Bridge.	BBC [http://www.bbc.co.uk/histor y/domesday/dblock/GB- 392000-828000/picture/2 accessed: 10.11.17]
12/09/1995	SEPA extent - Babties interpolated flood outlines from a limited number of points. Ellon Gauging station 12/09/1995 records stage of 3.011 m	SEPA hydrometric data ⁸

7 CBHE found online at http://cbhe.hydrology.org.uk/ [accessed on 10/11/17]

	River Ythan reported to have risen by approx. 1.2 m (C. 350 m downstream of Old Bridge of Ellon)	
10/02/1996	105.26 m ³ /s recorded at Ellon gauging station (10003) - 4th highest recorded flow in record (including Ardlethen data)	SEPA hydrometric data9
2000	Modley Burn in Ellon, a wall collapsed causing flooding	SEPA FRMS ⁹
22/10/2002	22-23 October 2002 - 5th highest recorded stage at Ellon gauging station	Flood Risk Report ⁹
21/11/2002	21-22 November 2002	Flood Risk Report ⁹
10/ 2002 11/2002	SEPA received letter from resident at 3 Provost Cordiner Road, Ellon. Photographs showing river near to garden, resident wanted an embankment built.	SEPA ⁹
10/2002 11/2002	7 Properties flooded by River Ythan. Woodhead Road, Methlick. Flooding from blocked culvert in private land- Balqholly-Auchterless	4th Biennial Report- Aberdeenshire County Council ⁹
11/2002	SEPA extent - Trash line survey SEPA	SEPA Extent ⁹
2002	Modley Burn, Ellon - a basement of a property located on the culvert section of the burn flooded due to water backing up.	SEPA FRMS ⁹
2002	SEPA flood photos of Ellon catchment	Photos supplied by SEPA
2004	Two properties in Findhorn Gardens flooded due to runoff from the adjacent housing development.	SEPA FRMS ⁹
2009	Flood from Broomies Burn, which affected Castle Way Industrial Estate, Ellon and damaged two bridges. Two industrial units and a school were affected.	SEPA FRMS ⁹
Sept 2009	Ellon Golf course flooded	YouTube [https://www.youtube.com/w atch?v=fUrmZl8UzLI accessed on 20/10/17]
04/01/2016	Main road (A90) outside of Ellon closed due to flooding	Press and Journal [https://www.pressandjourna l.co.uk/fp/news/aberdeenshi re/795688/road-outside- ellon-closed-due-flooding/ accessed on 10.11.17]
08/01/2016	River Ythan floods the centre of Ellon. Flooding on fields beside Esslemont Circle.	YouTube [https://www.youtube.com/w atch?v=9u3RUvxaDaw accessed on 20.10.17]
08/01/2016	'The River Ythan also burst its banks, with flow levels breaking previous records at Ellon18 homes in Ellon were evacuated'	BBC News [http://www.bbc.co.uk/news/ uk-scotland-35259398 accessed on 10.11.17]
08/01/2016	' In Ellon, the Ythan stood at 4.4m (14.4ft) at its peak, 1.2m (3.93ft) above the previous record level in 1983, according to Scottish Environmental Protection Agency (SEPA) figures.' [4.4m was recorded at Ellon gauging station on 08/01/2016. Previous record level was 3.34m on 23/12/2012. It is suggested 1983 is a mis-print in this article.]	Press and Journal [https://www.pressandjourna l.co.uk/fp/news/aberdeenshi re/799591/pictures-ellon- flooded-ythan-explodes- town/ accessed on 10.11.17]
08/01/2016	SEPA gauging station Ythan at Ellon; Highest event on record - stage 4.46 m	SEPA hydrometric data
08/01/2016	Overtopping of Burn opposite 87 Hillhead Drive; flow pathway down Hillhead drive. Trash line evident from photos (see appendix A) near 32 and 34 Patey Road.	Client record.
	Hiver Ythan overtopped into Bruce Crescent adjacent	

	 to 32 Bruce Crescent. Flooding exasperated by surface water from Riverside Road/Provost Davidson Drive and drainage backing up in Bruce Crescent. Flooding to Ythan Court, The Meadows flooding. Overland flow path from playing fields to the North and flooding from the Broomies Burn to the east of the flood area. Flooding from the River Ythan evident from the west of the flood area. 	
08/01/2016	Video footage of the highest flow on record at Ythan, showing flood extents.	YouTube [https://www.youtube.com/w atch?v=_SzdPOEmK8g accessed on 20.10.17]
2016	Flood levels and extents supplied by SEPA (Appendix E)	Data supplied by SEPA

In summary Ellon has experienced flooding in 1642, 1829, 1894, 1913, 1951, 1986, 1996, 2000, 2002, 2004, 2009, 2015 and 2016 (Figure 2-1).

Figure 2-1: Key flood events in Ellon

JBA

2.2 Previous Flood Estimates

JBA Consulting undertook a Flood Risk and Mechanisms review of the Ythan at Ellon in 2005, finalised in August 2006⁸. This work included peak flow estimation on the River Ythan at Ellon as well as analysis and incorporation of the Ardlethen data. Extreme sea levels and joint probability analysis was also undertaken. Estimates were based upon the techniques available at the time. In the case of the 2005 report comparisons were made between the statistical pooling group analysis and single site (SS) approach. Subsequently, in July 2010 JBA undertook a Flood Risk Assessment (FRA) for Cromleybank, Ellon⁹ which involved updating peak flow estimates and extreme sea levels from the 2005 Ellon Flood Study using updated methodologies and data. Comparisons were made between the statistical SS and Enhanced Single Site (ESS) methodologies.

Final peak flow estimates for the 2005 study were derived using the statistical pooling methodology using an extended AMAX (Annual Maxima) series (transferring the Ardlethen flows to Ellon, see Section 3.2.1 for details) with a GEV distribution. The 2010 peak flows were derived using the updated ESS methodology with a GEV distribution, also utilising an extended AMAX series. Peak flow estimates from these reports are summarised below (Table 2-2). It can be seen the estimates are very similar with the 0.5% AP (200 year) peak flow in 2005 being estimated at 137.0 m³/s and 146.7 m³/s in 2010.

Return Period (years)	Annual Probability [AP] (T)	2005 study River Ythan at Ellon. Statistical pooling group analysis: GEV (m³/s)	2010 study River Ythan at Ellon, Statistical ESS analysis: GEV (m ³ /s)	
2	50	57.7	58.8	
5	2	78.6	79.4	
10	10 10 91.6		92.9	
25	4	106.9	109.8	
50	2	117.5	122.3	
75	1.3	123.2	129.5	
100	1	127.5	134.5	
200	0.5	137.0	146.7	
200 +CC	0.5 +CC	171.3	176.0	

Table 2-2: Peak flow estimates from the 2005 and 2010 JBA studies

⁸ JBA Consulting. August 2005. The Study of Flooding Mechanisms and the Areas at Risk from Flooding. The Ythan at Ellon, Aberdeenshire. Final Report.

⁹ JBA Consulting. July 2010. Cromleybank, Ellon. Flood Risk Assessment. Draft Report. 2010s4246.

3 Flood Estimation: River Ythan and Overall Approach

3.1 Peak Flows: overall approach

Important inputs into a flood study are the analysis of historic floods (where data are available), and estimation of flood flows for a range of annual probabilities or 'design' events. Flood estimates for catchments of this size and type are undertaken using the Flood Estimation Handbook (FEH). The FEH offers three methods for analysing design flood flows: the Statistical, the Rainfall Runoff, and hybrid methods. The Statistical method combines estimation of the median annual maximum flood (QMED) at the subject site with a growth curve, derived from one of three methods; (a) a pooling group of gauged catchments that are considered hydrologically similar to the subject site, (b) through single site analysis of a nearby gauge, or (c) a combination of the two through the use of enhanced single site. The Rainfall Runoff method combines design rainfall with a unit hydrograph derived for the subject site (the Rainfall Runoff method has recently been updated as ReFH2¹⁰). Hybrid methods involve a combination of the two. Both the Statistical and Rainfall Runoff procedures require the derivation of catchment descriptors (Table 1-1).

Adjustments were then made to catchment area (using OS background mapping) and URBEXT (using the national growth model through the year of study, 2018, per FEH Volume 5). The FEH CD-ROM BFIHOST values appeared reasonable in comparison to the available geological information¹¹.

The Statistical Method was selected as the most appropriate choice of method of peak flow estimation for the River Ythan. This was because of the relatively large, rural nature of this catchment and the good record of gauged data available. For the other catchments, comparisons were made between the Statistical method and different Rainfall Runoff methods. Following this comparison, it was assumed that the most appropriate approach was to use the Rainfall Runoff method.

In addition to peak flow and tidal level estimates, the hydraulic model also required the following information:

- Fluvial hydrographs for the model upstream limit on the Ythan, and also the Modley, Broomies, Fortree and Hillhead Burns.
- Appropriate storm durations for flood mapping. As the Ythan and the burns have very different catchment areas, and following storm duration analysis, two catchment wide storm durations (one long and one short) were considered independently for the modelling.
- Stage hydrograph for the downstream boundary.

These items are also discussed in the following sections.

¹⁰ Wallingford Hydro Solutions (WHS) The Revitalised Flood Hydrograph, ReFH2: Technical Guidance. 2015

¹¹ http://mapapps.bgs.ac.uk/geologyofbritain/home.html

3.2 River Ythan Flood Estimation

3.2.1 Ythan at Ellon

There is a SEPA gauging station at Ellon (station number 10003) with 33 years of AMAX data available (spanning water years¹² 1984 to 2017). JBA Consulting undertook a rating review of the gauging station and developed a new high flow rating using hydraulic modelling¹³. The original SEPA AMAX series was kept pre-1994 due to a change in flow regime. The station has been gauged up to 2.98 m, the existing SEPA rating has been applied below this level and the new rating only applied to the post-1994 AMAX series above this stage. The AMAX series is given in Table 3-1 and Figure 3-1 (with a comparison to the original series in Appendix C).

The Ellon gauging station is a replacement of the Ythan at Ardlethen (station number 10001) located approximately 3 km upstream of Ellon. This station closed in 1984 with 44 years of AMAX data (spanning water years 1940 - 1984). During the Ellon Flood Study⁸ a regression model was utilised to relate the flows between the two gauges and subsequently extend the length of the AMAX series available for Ellon. The regression analysis was originally undertaken by Andrew Black (Dundee University) and was supplied to JBA by SEPA¹⁴. The regression equation (Equation 3-1) resulting from the analysis is displayed below:

Equation 3-1: Regression between Ardlethen and Ellon Gauging Stations

 $\begin{array}{l} Y = 1.1603 \; X - 1.556 \\ r^2 = 0.9983 \\ Y = Ellon, \; X = Ardlethen \end{array}$

This regression was used to transfer the Ardlethen flows to Ellon thereby giving an extend AMAX record at Ellon covering water years 1940 to 2017 (Table 3-3 and Figure 3-2).

Given size of the catchment, reasonable record length at Ellon (with the ability to extend the record length through transfer of the Ardelthen flows, giving 78 years of AMAX data) in addition to the rating review (which should reduce the uncertainty of high flows), it was anticipated that the statistical approach of SS and ESS analysis would be the most suitable approach at this location, with the Rainfall Runoff approach provided for comparison only.

The SS analysis was carried out using only the Ellon data (Table 3-1,Table 3-2) and again for the extended Ellon record along with the ESS analysis (Table 3-3, Table 3-4). In both cases the Generalised Logistic (GL) and Generalised Extreme Value (GEV) distribution curves were tested. Additional information on the ESS pooling approach is provided in Appendix A. A QMED value of 59.09 m³/s for the Ellon only record, and 56.82 m³/s for the extended record, as derived from the observed AMAX data, was used in each case.

From these results, it can be seen all curves fit the observed data well up to approximately the 30 year return period event (Figure 3-3). The SS GL and ESS GL results provide steeper growth curves than the GEV results. In all cases, the frequency of the 2016 flood (260 m³/s; this flow value assumes that the corresponding stage value was not artificially influenced during the flood event; e.g. via debris within the channel Appendix D or blockage at the bridge) was estimated to be very rare, ranging from an AP value of over 0.25% (400 years; under the SS analysis with a GL growth curve) to over 0.1% AP (1000 years, using ESS with the GEV growth curve). Statistically, it could be argued that the ESS approach is the most suitable as it uses the largest sample size and is less likely to be influenced by large outlier events (such as 2016). The Z statistic approach available within WINFAP indicated that the GL distribution had the best goodness of fit to the ESS pooling group.

The corresponding AP estimate for the 2016 event using this ESS approach is in excess of 0.2% (500 years); using the SS approach the AP value is 0.25% (400 years). In either case, this is estimated to be a very rare event, and unfortunately no quantified ranked flood history appears to be available for the Ythan. However, it was possible to make a very approximate estimate based upon applying simplifying assumptions to the flood history which was available (Table 2-1), as follows:

¹² A water year is defined as the period between 1 October in one year and 30 September in the next year.

¹³ JBA Consulting. 2017s7016. Ellon Gauging Station Rating Review. Draft Report. February 2018.

¹⁴ Email communication between Caroline Anderton (JBA) and Derek Fraser (SEPA), 18 February 2005

- Changes in the physical catchment and climatic conditions since 1642 were disregarded (this is clearly a very big assumption).
- Applying Gringorten plotting positions to the period 1642 to 2017, yielded an estimate of 0.15% AP (672 years) for the largest flood event during that period and 0.41% (241 years) for the second largest.

For the ESS estimate of the 2016 event to be consistent with the historical analysis, it would therefore need to be assumed that the 2016 event was the largest event between 1642 and 2017. This may or may not be correct, and in the absence of quantifiable ranked historical information to support this assumption, it was concluded that the SS analysis was more appropriate in this particular case.

As in any flood frequency analysis, the findings may be subject to change following large floods and extrapolation to large floods (e.g. the 0.1% AP, 1000 year) events may be more uncertain than under a pooled approach. In order to provide an indication of uncertainty, 95% confidence limits for the SS curves generated via high resampling through the bootstrapping method available in WINFAP are shown in Figure 3-4, Figure 3-5 (for the GL and GEV growth curves, respectively) and Table 3-5. The width of the confidence band increases with return period and is marginally wider for the GEV (e.g. a range of 121 to 325 m³/s for the 0.5% AP, 200 year, event). It can be seen that the 2016 event is an outlier from the rest of the AMAX series, but it does lie within the confidence intervals. A sensitivity test was therefore undertaken whereby the 2016 event was removed from the AMAX data and the SS analysis re-run. This resulted in a large change in the estimate of the 0.5% AP (200) year event, which reduced to 159 m³/s, which is not dissimilar to the values estimated in previous studies (Table 3-6). This indicates that the flow value of the 2016 has a large influence upon the results. A further test was therefore undertaken using AMAX stage data only for the full period of record (i.e. including the 2016 event) at the Ellon gauge (using only the 34 years of Ellon stage data as it was not possible to directly transfer the stage data from Ardlethen). Application of a single site analysis to the stage AMAX resulted in an AP value for the 2016 stage (4.46 m) of between circa 0.85% (117 years) and 0.38% (260 years). While the stage analysis was based upon a shorter record length than the flow analysis using the combined Ardlethen and Ellon series, and may therefore be slightly more uncertain, it does still indicate that the 2016 event was very large and at least in excess of 1% AP (100 years).

Previous JBA studies have adopted a pooled/ESS GEV approach to peak flow estimation for the Ythan. However, based on the SS confidence interval and ESS WINFAP analysis on the extended Ellon AMAX record adoption of the GL distribution is considered more appropriate. Arguably either the SS or ESS approaches could be adopted however, on the basis of the historical discussion above, the SS GL approach has been adopted for this study.

Table 3-1: Ellon AMAX series

Date/Time	Stage	Q	Comment
	(m)	(m³/s)	
29/01/1984 10:45	2.474	57.13	Original SEPA Q
04/11/1984 10:15	3.023	93.63	Original SEPA Q
01/12/1985 14:15	2.870	82.32	Original SEPA Q
11/04/1987 13:45	2.463	56.51	Original SEPA Q
25/01/1988 14:45	2.895	84.10	Original SEPA Q
20/10/1988 06:15	2.685	69.84	Original SEPA Q
17/12/1989 12:45	1.348	14.01	Original SEPA Q
05/03/1991 08:00	2.158	40.98	Original SEPA Q
04/11/1991 19:30	1.967	32.40	Original SEPA Q
01/10/1992 09:15	1.955	31.90	Original SEPA Q
01/03/1994 14:45	2.791	77.69	Original SEPA Q
12/09/1995 14:00	3.011	97.25	JBA Rating
10/02/1996 20:00	3.256	117.61	JBA Rating
04/12/1996 10:30	1.995	39.86	Original SEPA Rating
05/04/1998 14:00	2.367	56.40	Original SEPA Rating
15/11/1998 08:45	2.198	48.62	Original SEPA Rating
27/04/2000 02:15	2.848	80.74	Original SEPA Rating
12/03/2001 20:30	2.594	67.49	Original SEPA Rating
20/07/2002 20:15	2.109	44.70	Original SEPA Rating
23/10/2002 03:30	3.189	111.59	JBA Rating
19/01/2004 21:45	2.038	41.66	Original SEPA Rating
08/01/2005 16:45	1.906	36.22	Original SEPA Rating
25/03/2006 17:00	2.324	54.38	Original SEPA Rating
12/02/2007 01:45	2.481	61.88	Original SEPA Rating
22/11/2007 14:15	2.464	61.05	Original SEPA Rating
04/09/2009 13:00	2.784	77.32	Original SEPA Rating
02/11/2009 03:30	3.320	123.53	JBA Rating
11/12/2010 10:45	2.922	84.76	Original SEPA Rating
14/08/2012 14:45	1.707	28.55	Original SEPA Rating
23/12/2012 11:00	3.344	125.80	JBA Rating
06/02/2014 07:30	2.211	49.21	Original SEPA Rating
07/10/2014 23:45	2.362	56.16	Original SEPA Rating
08/01/2016 04:45	4.460	260.30	JBA Rating
08/02/2017 05:00	2.137	45.92	Original SEPA Rating

Annual Probability [AP] (%)	al Probability Return Period [AP] (%) (years)		River Ythan at Ellon Gauging Station. Single Site Statistical Method Flow: GEV (m ³ /s)
50	2	59.07	60.21
20	5	89.95	93.41
10	10	115.09	119.90
4	25	155.09	159.54
3.33	30	164.28	168.23
2	50	192.71	194.19
1.33	75	218.48	216.67
1	100	238.72	233.72
0.5	200	295.29	278.97
0.2	500	390.73	349.10
0.1	1000	482.77	411.28
3.33 +CC	30 +CC	203.70	208.60
0.5 +CC	200 +CC	366.15	345.92
0.5 specific discharge	200	0.55	0.52
1 growth factor	100	4.04	3.88

Table 3-2: Peak flow estimates: statistical estimates for the Ythan at Ellon

Table 3-3: Extended Ellon AMAX series (transfer from Ardlethen)

07 Feb 1940 1.65 36.93 Equation 3-1 applied 06 Nov 1940 2.01 55.44 Equation 3-1 applied 11 Nov 1941 2.18 67.69 Equation 3-1 applied 09 May 1943 1.34 46.53 Equation 3-1 applied 07 Feb 1945 1.98 54.60 Equation 3-1 applied 07 Feb 1945 2.47 90.26 Equation 3-1 applied 20 Nov 1946 2.15 56.61 Equation 3-1 applied 21 Nov 1948 1.94 52.20 Equation 3-1 applied 22 Sop 1950 2.26 73.48 Equation 3-1 applied 06 Nov 1951 2.78 119.55 Equation 3-1 applied 06 Nov 1951 2.78 119.55 Equation 3-1 applied 24 Nov 1954 2.33 78.81 Equation 3-1 applied 24 Nov 1954 2.33 77.70 Equation 3-1 applied 20 Jul 1957 2.14 64.92 Equation 3-1 applied 21 Dec 1958 2.01 56.44 Equation 3-1 applied 22 Jan 1960 2.06 59.61	Date	Stage (m)	Q (m³/s)	Comment
06 Nov 1940 2.01 56.44 Equation 3-1 applied 11 Nov 1941 2.18 67.69 Equation 3-1 applied 09 May 1943 1.84 46.53 Equation 3-1 applied 13 Nov 1943 1.55 24.62 Equation 3-1 applied 07 Feb 1945 2.47 90.26 Equation 3-1 applied 28 Oct 1945 2.47 90.26 Equation 3-1 applied 11 Jan 1948 1.94 52.20 Equation 3-1 applied 11 Dec 1948 2.00 55.82 Equation 3-1 applied 25 Sep 1950 2.26 73.48 Equation 3-1 applied 10 Jan 1951 1.89 49.31 Equation 3-1 applied 22 Sep 1953 1.91 50.46 Equation 3-1 applied 24 Nov 1954 2.33 77.70 Equation 3-1 applied 20 Jul 1957 2.14 64.92 Equation 3-1 applied 21 Dec 1958 2.01 56.44 Equation 3-1 applied 22 Jan 1960 2.06 59.61 Equation 3-1 applied 22 Jan 1960 2.06 59.61 </td <td>07 Feb 1940</td> <td>1.65</td> <td>36.93</td> <td>Equation 3-1 applied</td>	07 Feb 1940	1.65	36.93	Equation 3-1 applied
11 Nov 1941 2.18 67.69 Equation 3-1 applied 09 May 1943 1.84 46.53 Equation 3-1 applied 13 Nov 1943 1.35 24.62 Equation 3-1 applied 07 Fob 1945 2.47 90.26 Equation 3-1 applied 20 Nov 1946 2.15 65.51 Equation 3-1 applied 11 Dec 1948 2.00 55.82 Equation 3-1 applied 11 Dec 1948 2.00 55.82 Equation 3-1 applied 06 Nov 1951 2.78 119.55 Equation 3-1 applied 06 Nav 1954 1.79 43.86 Equation 3-1 applied 07 Fob 1951 2.78 119.55 Equation 3-1 applied 06 May 1954 1.79 43.86 Equation 3-1 applied 07 Bob 1951 2.78 119.55 Equation 3-1 applied 10 Dec 1955 2.03 57.70 Equation 3-1 applied 11 Dec 1957 2.14 64.92 Equation 3-1 applied 12 Dec 1958 2.01 56.44 Equation 3-1 applied 12 Dec 1958 2.09 61.5	06 Nov 1940	2.01	56.44	Equation 3-1 applied
09 May 1943 1.84 46.53 Equation 3-1 applied 13 Nov 1943 1.35 24.62 Equation 3-1 applied 07 Feb 1945 1.98 54.60 Equation 3-1 applied 28 Oct 1945 2.47 90.26 Equation 3-1 applied 11 Jan 1948 1.94 52.20 Equation 3-1 applied 12 Sop 1950 2.26 73.48 Equation 3-1 applied 10 Jan 1951 1.89 49.31 Equation 3-1 applied 22 Sep 1953 1.91 50.46 Equation 3-1 applied 06 Nov 1951 2.78 119.55 Equation 3-1 applied 04 May 1954 1.79 43.86 Equation 3-1 applied 05 Nov 1951 2.78 77.0 Equation 3-1 applied 16 Dec 1955 2.03 57.70 Equation 3-1 applied 20 Jul 1957 2.14 64.92 Equation 3-1 applied 11 Dec 1958 2.01 56.44 Equation 3-1 applied 12 Jan 1960 2.06 59.61 Equation 3-1 applied 03 Sep 1963 2.09 61.56 </td <td>11 Nov 1941</td> <td>2.18</td> <td>67.69</td> <td>Equation 3-1 applied</td>	11 Nov 1941	2.18	67.69	Equation 3-1 applied
13 Nov 1943 1.35 24.62 Equation 3-1 applied 07 Feb 1945 1.98 54.60 Equation 3-1 applied 28 Oct 1945 2.47 90.26 Equation 3-1 applied 20 Nov 1946 2.15 65.61 Equation 3-1 applied 11 Jan 1948 1.94 52.20 Equation 3-1 applied 11 Dec 1948 2.00 55.82 Equation 3-1 applied 10 Jan 1951 1.89 49.31 Equation 3-1 applied 06 Nov 1951 2.78 119.55 Equation 3-1 applied 22 Sep 1953 1.91 50.46 Equation 3-1 applied 24 Nov 1954 2.33 78.81 Equation 3-1 applied 24 Nov 1954 2.33 77.0 Equation 3-1 applied 20 Jul 1957 2.14 64.92 Equation 3-1 applied 12 Dec 1958 2.01 56.44 Equation 3-1 applied 12 Dec 1958 2.01 56.44 Equation 3-1 applied 12 Jan 1960 2.06 59.61 Equation 3-1 applied 12 Jan 1962 1.99 55.21 </td <td>09 May 1943</td> <td>1.84</td> <td>46.53</td> <td>Equation 3-1 applied</td>	09 May 1943	1.84	46.53	Equation 3-1 applied
07 Feb 1945 1.98 54.60 Equation 3-1 applied 28 Oct 1945 2.47 90.26 Equation 3-1 applied 20 Nov 1946 2.15 65.61 Equation 3-1 applied 11 Jan 1948 1.94 52.20 Equation 3-1 applied 25 Sep 1950 2.26 73.48 Equation 3-1 applied 10 Jan 1951 1.89 49.31 Equation 3-1 applied 06 Nov 1951 2.78 119.55 Equation 3-1 applied 22 Sep 1953 1.91 50.46 Equation 3-1 applied 06 May 1954 1.79 43.86 Equation 3-1 applied 24 Nov 1954 2.33 78.81 Equation 3-1 applied 20 Jul 1957 2.14 64.92 Equation 3-1 applied 11 Dec 1957 2.49 91.98 Equation 3-1 applied 12 Dec 1958 2.01 56.44 Equation 3-1 applied 12 Jan 1960 2.19 68.40 Equation 3-1 applied 13 Jan 1962 1.99 55.21 Equation 3-1 applied 14 Sa 45.99 Equation 3-	13 Nov 1943	1.35	24.62	Equation 3-1 applied
28 Oct 1945 2.47 90.26 Equation 3-1 applied 20 Nov 1946 2.15 65.61 Equation 3-1 applied 11 Jan 1948 1.94 65.20 Equation 3-1 applied 11 De 1948 2.00 55.82 Equation 3-1 applied 25 Sep 1950 2.26 73.48 Equation 3-1 applied 06 Nov 1951 2.78 119.55 Equation 3-1 applied 06 Nov 1954 2.78 119.55 Equation 3-1 applied 06 Nov 1954 2.78 119.55 Equation 3-1 applied 06 May 1954 1.79 43.86 Equation 3-1 applied 24 Nov 1954 2.33 78.81 Equation 3-1 applied 20 Jul 1957 2.14 64.92 Equation 3-1 applied 21 Dec 1958 2.01 56.44 Equation 3-1 applied 22 Jan 1960 2.06 59.61 Equation 3-1 applied 23 Jan 1962 1.99 55.21 Equation 3-1 applied 30 Sep 1963 2.09 61.56 Equation 3-1 applied 30 Sec 1965 2.17 66.99	07 Feb 1945	1.98	54.60	Equation 3-1 applied
20 Nov 1946 2.15 65.61 Equation 3-1 applied 11 Jan 1948 1.94 52.20 Equation 3-1 applied 11 Dec 1948 2.00 55.82 Equation 3-1 applied 25 Sep 1950 2.26 73.48 Equation 3-1 applied 0 Jan 1951 1.89 49.31 Equation 3-1 applied 0 6 Nov 1951 2.78 119.55 Equation 3-1 applied 22 Sep 1953 1.91 50.46 Equation 3-1 applied 24 Nov 1954 2.33 78.81 Equation 3-1 applied 20 Jul 1957 2.14 64.92 Equation 3-1 applied 12 Dec 1958 2.01 56.44 Equation 3-1 applied 12 Dec 1958 2.01 56.44 Equation 3-1 applied 21 Jan 1960 2.06 59.61 Equation 3-1 applied 23 Jan 1960 2.08 55.21 Equation 3-1 applied 24 Nov 1960 2.19 68.40 Equation 3-1 applied 25 Mar 1964 1.83 45.99 Equation 3-1 applied 26 Mar 1965 1.80 44.38<	28 Oct 1945	2.47	90.26	Equation 3-1 applied
11 Jan 1948 1.94 52.20 Equation 3-1 applied 11 Dec 1948 2.00 55.82 Equation 3-1 applied 25 Sep 1950 2.26 73.48 Equation 3-1 applied 10 Jan 1951 1.89 49.31 Equation 3-1 applied 22 Sep 1953 1.91 50.46 Equation 3-1 applied 22 Sep 1953 1.91 50.46 Equation 3-1 applied 24 Nov 1954 2.78 119.55 Equation 3-1 applied 24 Nov 1954 2.33 78.81 Equation 3-1 applied 20 Jul 1957 2.14 64.92 Equation 3-1 applied 21 Dec 1958 2.01 56.44 Equation 3-1 applied 22 Jan 1960 2.06 59.61 Equation 3-1 applied 23 Jan 1962 1.99 65.21 Equation 3-1 applied 24 Jan 1962 1.99 65.52 Equation 3-1 applied 25 Mar 1964 1.83 45.99 Equation 3-1 applied 25 Mar 1964 1.83 45.99 Equation 3-1 applied 30 Sep 1963 2.07 74.23<	20 Nov 1946	2.15	65.61	Equation 3-1 applied
11 Dec 1948 2.00 55.82 Equation 3-1 applied 22 Sep 1950 2.26 73.48 Equation 3-1 applied 10 Jan 1951 1.89 49.31 Equation 3-1 applied 06 Nov 1951 2.78 1119.55 Equation 3-1 applied 22 Sep 1953 1.91 50.46 Equation 3-1 applied 06 May 1954 1.79 43.86 Equation 3-1 applied 24 Nov 1954 2.33 78.81 Equation 3-1 applied 20 Jul 1957 2.14 64.92 Equation 3-1 applied 20 Jul 1957 2.14 64.92 Equation 3-1 applied 11 Dec 1957 2.49 91.98 Equation 3-1 applied 12 Dec 1958 2.01 56.44 Equation 3-1 applied 12 Jan 1960 2.19 68.40 Equation 3-1 applied 13 applied 1.83 45.99 Equation 3-1 applied 25 Mar 1964 1.83 45.99 Equation 3-1 applied 03 Sep 1965 2.17 66.99 Equation 3-1 applied 04 Sep 1965 2.87 74.23<	11 Jan 1948	1.94	52.20	Equation 3-1 applied
25 Sep 1950 2.26 73.48 Equation 3-1 applied 10 Jan 1951 1.89 49.31 Equation 3-1 applied 06 Nov 1951 2.78 119.55 Equation 3-1 applied 22 Sep 1953 1.91 50.46 Equation 3-1 applied 24 Nov 1954 1.79 43.86 Equation 3-1 applied 24 Nov 1954 2.33 78.81 Equation 3-1 applied 20 Jul 1957 2.14 64.92 Equation 3-1 applied 12 Dec 1958 2.01 56.44 Equation 3-1 applied 12 Dec 1958 2.01 56.44 Equation 3-1 applied 21 Jan 1960 2.06 59.61 Equation 3-1 applied 01 Nov 1960 2.19 68.40 Equation 3-1 applied 03 Sep 1963 2.09 61.56 Equation 3-1 applied 03 Sep 1965 1.80 44.38 Equation 3-1 applied 04 As 38 Equation 3-1 applied 1.95 Equation 3-1 applied 05 May 1968 2.27 74.23 Equation 3-1 applied 05 May 1968 2.27	11 Dec 1948	2.00	55.82	Equation 3-1 applied
10 Jan 1951 1.89 49.31 Equation 3-1 applied 06 Nov 1951 2.76 119.55 Equation 3-1 applied 22 Sep 1953 1.91 50.46 Equation 3-1 applied 06 May 1954 1.79 43.86 Equation 3-1 applied 24 Nov 1954 2.33 78.81 Equation 3-1 applied 16 Dec 1955 2.03 57.70 Equation 3-1 applied 20 Jul 1957 2.14 64.92 Equation 3-1 applied 12 Dec 1958 2.01 56.44 Equation 3-1 applied 22 Jan 1960 2.06 59.61 Equation 3-1 applied 11 Dec 1957 2.19 68.40 Equation 3-1 applied 01 Nov 1960 2.19 68.40 Equation 3-1 applied 12 Jan 1962 1.99 55.21 Equation 3-1 applied 03 Sep 1963 2.09 61.56 Equation 3-1 applied 18 Sep 1965 1.80 44.38 Equation 3-1 applied 05 May 1968 2.27 74.23 Equation 3-1 applied 05 May 1968 2.27 74.23<	25 Sep 1950	2.26	73.48	Equation 3-1 applied
06 Nov 1951 2.78 119.55 Equation 3-1 applied 22 Sep 1953 1.91 50.46 Equation 3-1 applied 06 May 1954 1.79 43.86 Equation 3-1 applied 24 Nov 1954 2.33 78.81 Equation 3-1 applied 16 Dec 1955 2.03 57.70 Equation 3-1 applied 20 Jul 1957 2.14 64.92 Equation 3-1 applied 11 Dec 1958 2.01 56.44 Equation 3-1 applied 22 Jan 1960 2.06 59.61 Equation 3-1 applied 01 Nov 1960 2.19 68.40 Equation 3-1 applied 12 Jan 1962 1.99 55.21 Equation 3-1 applied 03 Sep 1963 2.09 61.56 Equation 3-1 applied 03 Dec 1965 2.17 66.99 Equation 3-1 applied 05 May 1968 2.27 74.23 Equation 3-1 applied 05 May 1968 2.27 74.23 Equation 3-1 applied 05 May 1967 2.06 59.61 Equation 3-1 applied 05 May 1967 0.89 11.55<	10 Jan 1951	1.89	49.31	Equation 3-1 applied
22 Sep 1953 1.91 50.46 Equation 3-1 applied 06 May 1954 1.79 43.86 Equation 3-1 applied 24 Nov 1954 2.33 78.81 Equation 3-1 applied 16 Dec 1955 2.03 57.70 Equation 3-1 applied 20 Jul 1957 2.14 64.92 Equation 3-1 applied 11 Dec 1957 2.49 91.98 Equation 3-1 applied 22 Jan 1960 2.06 59.61 Equation 3-1 applied 12 Dec 1958 2.01 56.44 Equation 3-1 applied 22 Jan 1960 2.06 59.61 Equation 3-1 applied 13 Dec 1953 2.09 61.56 Equation 3-1 applied 03 Sep 1963 2.09 61.56 Equation 3-1 applied 18 Sep 1965 1.80 44.38 Equation 3-1 applied 03 Dec 1965 2.17 66.99 Equation 3-1 applied 05 May 1968 2.27 74.23 Equation 3-1 applied 05 May 1968 2.27 74.23 Equation 3-1 applied 04 Hay 1971 1.98 54.60 </td <td>06 Nov 1951</td> <td>2.78</td> <td>119.55</td> <td>Equation 3-1 applied</td>	06 Nov 1951	2.78	119.55	Equation 3-1 applied
06 May 1954 1.79 43.86 Equation 3-1 applied 24 Nov 1954 2.33 78.81 Equation 3-1 applied 16 Dec 1955 2.03 57.70 Equation 3-1 applied 20 Jul 1957 2.14 64.92 Equation 3-1 applied 11 Dec 1957 2.49 91.98 Equation 3-1 applied 22 Jan 1960 2.06 59.61 Equation 3-1 applied 01 Nov 1960 2.19 68.40 Equation 3-1 applied 12 Jan 1962 1.99 55.21 Equation 3-1 applied 03 Sep 1963 2.09 61.56 Equation 3-1 applied 18 Sep 1965 1.80 44.38 Equation 3-1 applied 03 Dec 1965 2.17 66.99 Equation 3-1 applied 05 May 1968 2.27 74.23 Equation 3-1 applied 05 May 1968 2.27 74.23 Equation 3-1 applied 04 Feb 1972 1.94 52.20 Equation 3-1 applied 04 Feb 1972 0.89 11.55 Equation 3-1 applied 04 Feb 1972 1.94 52.20 </td <td>22 Sep 1953</td> <td>1.91</td> <td>50.46</td> <td>Equation 3-1 applied</td>	22 Sep 1953	1.91	50.46	Equation 3-1 applied
24 Nov 1954 2.33 78.81 Equation 3-1 applied 16 Dec 1955 2.03 57.70 Equation 3-1 applied 20 Jul 1957 2.14 64.92 Equation 3-1 applied 11 Dec 1957 2.49 91.98 Equation 3-1 applied 12 Dec 1958 2.01 56.44 Equation 3-1 applied 22 Jan 1960 2.06 59.61 Equation 3-1 applied 01 Nov 1960 2.19 68.40 Equation 3-1 applied 03 Sep 1963 2.09 61.56 Equation 3-1 applied 25 Mar 1964 1.83 45.99 Equation 3-1 applied 03 Sep 1965 2.17 66.99 Equation 3-1 applied 03 Dec 1965 2.17 66.99 Equation 3-1 applied 04 May 1967 2.06 59.61 Equation 3-1 applied 05 May 1968 2.27 74.23 Equation 3-1 applied 05 May 1968 2.27 74.23 Equation 3-1 applied 19 Mar 1971 1.98 54.60 Equation 3-1 applied 19 Mar 1971 1.98 54.60 </td <td>06 May 1954</td> <td>1.79</td> <td>43.86</td> <td>Equation 3-1 applied</td>	06 May 1954	1.79	43.86	Equation 3-1 applied
16 Dec 1955 2.03 57.70 Equation 3-1 applied 20 Jul 1957 2.14 64.92 Equation 3-1 applied 11 Dec 1957 2.49 91.98 Equation 3-1 applied 12 Dec 1958 2.01 56.44 Equation 3-1 applied 22 Jan 1960 2.06 59.61 Equation 3-1 applied 01 Nov 1960 2.19 68.40 Equation 3-1 applied 12 Jan 1962 1.99 55.21 Equation 3-1 applied 03 Sep 1963 2.09 61.56 Equation 3-1 applied 18 Sep 1965 1.80 44.38 Equation 3-1 applied 03 Dec 1965 2.17 66.99 Equation 3-1 applied 04 May 1967 2.06 59.61 Equation 3-1 applied 05 May 1968 2.27 74.23 Equation 3-1 applied 05 May 1968 2.27 74.23 Equation 3-1 applied 19 Mar 1971 1.98 54.60 Equation 3-1 applied 19 Mar 1971 1.98 54.60 Equation 3-1 applied 20 Nov 1972 0.89 11.55 </td <td>24 Nov 1954</td> <td>2.33</td> <td>78.81</td> <td>Equation 3-1 applied</td>	24 Nov 1954	2.33	78.81	Equation 3-1 applied
20 Jul 19572.1464.92Equation 3-1 applied11 Dec 19572.4991.98Equation 3-1 applied12 Dec 19582.0156.44Equation 3-1 applied22 Jan 19602.0659.61Equation 3-1 applied01 Nov 19602.1968.40Equation 3-1 applied12 Jan 19621.9955.21Equation 3-1 applied03 Sep 19632.0961.56Equation 3-1 applied03 Sep 19651.8044.38Equation 3-1 applied18 Sep 19651.8044.38Equation 3-1 applied03 Dec 19652.1766.99Equation 3-1 applied05 May 19682.2774.23Equation 3-1 applied05 May 19682.2774.23Equation 3-1 applied05 May 19682.2774.23Equation 3-1 applied05 May 19692.0659.61Equation 3-1 applied07 Jan 19692.0860.91Equation 3-1 applied19 Mar 19711.9854.60Equation 3-1 applied04 Feb 19721.9452.20Equation 3-1 applied20 Nov 19720.8911.55Equation 3-1 applied29 Jan 19761.5733.32Equation 3-1 applied25 Dec 19781.6034.64Equation 3-1 applied25 Dec 19781.6034.64Equation 3-1 applied25 Dec 19781.6034.65Equation 3-1 applied25 Dec 19781.6034.65Equation 3-1 applied25 Dec 19781.6034.64Equation 3-1 applied <td>16 Dec 1955</td> <td>2.03</td> <td>57.70</td> <td>Equation 3-1 applied</td>	16 Dec 1955	2.03	57.70	Equation 3-1 applied
11 Dec 1957 2.49 91.98 Equation 3-1 applied 12 Dec 1958 2.01 56.44 Equation 3-1 applied 22 Jan 1960 2.06 59.61 Equation 3-1 applied 01 Nov 1960 2.19 68.40 Equation 3-1 applied 12 Jan 1962 1.99 55.21 Equation 3-1 applied 03 Sep 1963 2.09 61.56 Equation 3-1 applied 25 Mar 1964 1.83 45.99 Equation 3-1 applied 03 Dec 1965 2.17 66.99 Equation 3-1 applied 03 Dec 1965 2.17 66.99 Equation 3-1 applied 05 May 1968 2.27 74.23 Equation 3-1 applied 05 May 1968 2.27 74.23 Equation 3-1 applied 04 Feb 1972 1.94 52.20 Equation 3-1 applied 19 Mar 1971 1.98 54.60 Equation 3-1 applied 20 Nov 1972 0.89 11.55 Equation 3-1 applied 20 Dec 1973 2.11 62.89 Equation 3-1 applied 29 Jan 1976 1.57 33.32 </td <td>20 Jul 1957</td> <td>2.14</td> <td>64.92</td> <td>Equation 3-1 applied</td>	20 Jul 1957	2.14	64.92	Equation 3-1 applied
12 Dec 19582.0156.44Equation 3-1 applied22 Jan 19602.0659.61Equation 3-1 applied01 Nov 19602.1968.40Equation 3-1 applied12 Jan 19621.9955.21Equation 3-1 applied03 Sep 19632.0961.56Equation 3-1 applied25 Mar 19641.8345.99Equation 3-1 applied03 Dec 19652.1766.99Equation 3-1 applied03 Dec 19652.1766.99Equation 3-1 applied06 May 19672.0659.61Equation 3-1 applied05 May 19682.2774.23Equation 3-1 applied07 Jan 19692.0860.91Equation 3-1 applied15 Jan 19702.0659.61Equation 3-1 applied04 Feb 19721.9452.20Equation 3-1 applied20 Nov 19720.8911.55Equation 3-1 applied20 Nov 19720.8911.55Equation 3-1 applied29 Oct 19741.6235.55Equation 3-1 applied29 Jan 19761.5733.32Equation 3-1 applied21 Jan 19771.8848.75Equation 3-1 applied29 Step 19782.3983.59Equation 3-1 applied20 Nov 19720.891.55Equation 3-1 applied29 Jan 19761.5733.32Equation 3-1 applied21 Jan 19771.8848.75Equation 3-1 applied23 Feb 19782.3983.59Equation 3-1 applied24 Nov 19801.8245.45Equation 3-1 applied <td>11 Dec 1957</td> <td>2.49</td> <td>91.98</td> <td>Equation 3-1 applied</td>	11 Dec 1957	2.49	91.98	Equation 3-1 applied
22 Jan 19602.0659.61Equation 3-1 applied01 Nov 19602.1968.40Equation 3-1 applied12 Jan 19621.9955.21Equation 3-1 applied03 Sep 19632.0961.56Equation 3-1 applied25 Mar 19641.8345.99Equation 3-1 applied03 Dec 19652.1766.99Equation 3-1 applied03 Dec 19652.1766.99Equation 3-1 applied06 May 19672.0659.61Equation 3-1 applied05 May 19682.2774.23Equation 3-1 applied07 Jan 19692.0860.91Equation 3-1 applied15 Jan 19702.0659.61Equation 3-1 applied19 Mar 19711.9854.60Equation 3-1 applied20 Nov 19720.8911.55Equation 3-1 applied20 Nov 19720.8911.55Equation 3-1 applied29 Oct 19741.6235.55Equation 3-1 applied29 Jan 19761.5733.32Equation 3-1 applied21 Jan 19771.8848.75Equation 3-1 applied29 Loct 19782.3983.59Equation 3-1 applied21 Jan 19771.8848.75Equation 3-1 applied23 Feb 19782.3983.59Equation 3-1 applied24 Nov 19801.8245.45Equation 3-1 applied24 Nov 19801.8245.45Equation 3-1 applied24 Nov 19801.8245.45Equation 3-1 applied24 Nov 19801.8245.45Equation 3-1 applied </td <td>12 Dec 1958</td> <td>2.01</td> <td>56.44</td> <td>Equation 3-1 applied</td>	12 Dec 1958	2.01	56.44	Equation 3-1 applied
01 Nov 19602.1968.40Equation 3-1 applied12 Jan 19621.9955.21Equation 3-1 applied03 Sep 19632.0961.56Equation 3-1 applied25 Mar 19641.8345.99Equation 3-1 applied18 Sep 19651.8044.38Equation 3-1 applied03 Dec 19652.1766.99Equation 3-1 applied06 May 19672.0659.61Equation 3-1 applied05 May 19682.2774.23Equation 3-1 applied07 Jan 19692.0860.91Equation 3-1 applied19 Mar 19711.9854.60Equation 3-1 applied04 Feb 19721.9452.20Equation 3-1 applied20 Nov 19720.8911.55Equation 3-1 applied29 Oct 19741.6235.55Equation 3-1 applied29 Jan 19761.5733.32Equation 3-1 applied21 Jan 19771.8848.75Equation 3-1 applied23 Feb 19782.3983.59Equation 3-1 applied24 Nov 19801.8245.45Equation 3-1 applied25 Dec 19781.6034.64Equation 3-1 applied24 Nov 19801.8245.45Equation 3-1 applied31 Dec 19812.1062.23Equation 3-1 applied32 Feb 19782.64105.62Equation 3-1 applied33 Dec 19842.4757.13Original SEPA Q	22 Jan 1960	2.06	59.61	Equation 3-1 applied
12 Jan 19621.9955.21Equation 3-1 applied03 Sep 19632.0961.56Equation 3-1 applied25 Mar 19641.8345.99Equation 3-1 applied18 Sep 19651.8044.38Equation 3-1 applied03 Dec 19652.1766.99Equation 3-1 applied06 May 19672.0659.61Equation 3-1 applied05 May 19682.2774.23Equation 3-1 applied07 Jan 19692.0860.91Equation 3-1 applied19 Mar 19711.9854.60Equation 3-1 applied04 Feb 19721.9452.20Equation 3-1 applied20 Nov 19720.8911.55Equation 3-1 applied29 Oct 19741.6235.55Equation 3-1 applied29 Jan 19761.5733.32Equation 3-1 applied21 Jan 19771.8848.75Equation 3-1 applied23 Feb 19782.3983.59Equation 3-1 applied24 Nov 19801.8245.45Equation 3-1 applied25 Dec 19781.6034.64Equation 3-1 applied24 Nov 19801.8245.45Equation 3-1 applied24 Nov 19801.8245.45Equation 3-1 applied25 Dec 19781.6034.64Equation 3-1 applied26 Dec 19792.64105.62Equation 3-1 applied27 Dec 19812.1062.23Equation 3-1 applied28 Nov 19801.8245.45Equation 3-1 applied29 Jan 19842.4757.13Original SEPA Q </td <td>01 Nov 1960</td> <td>2.19</td> <td>68.40</td> <td>Equation 3-1 applied</td>	01 Nov 1960	2.19	68.40	Equation 3-1 applied
03 Sep 19632.0961.56Equation 3-1 applied25 Mar 19641.8345.99Equation 3-1 applied18 Sep 19651.8044.38Equation 3-1 applied03 Dec 19652.1766.99Equation 3-1 applied06 May 19672.0659.61Equation 3-1 applied05 May 19682.2774.23Equation 3-1 applied07 Jan 19692.0860.91Equation 3-1 applied19 Mar 19702.0659.61Equation 3-1 applied19 Mar 19711.9854.60Equation 3-1 applied04 Feb 19721.9452.20Equation 3-1 applied20 Nov 19720.8911.55Equation 3-1 applied20 Dec 19732.1162.89Equation 3-1 applied29 Oct 19741.6235.55Equation 3-1 applied21 Jan 19771.8848.75Equation 3-1 applied23 Feb 19782.3983.59Equation 3-1 applied24 Nov 19801.8245.45Equation 3-1 applied24 Nov 19801.8245.45Equation 3-1 applied31 Dec 19812.1062.23Equation 3-1 applied31 Dec 19842.4757.13Original SEPA Q	12 Jan 1962	1.99	55.21	Equation 3-1 applied
25 Mar 19641.8345.99Equation 3-1 applied18 Sep 19651.8044.38Equation 3-1 applied03 Dec 19652.1766.99Equation 3-1 applied06 May 19672.0659.61Equation 3-1 applied05 May 19682.2774.23Equation 3-1 applied07 Jan 19692.0860.91Equation 3-1 applied15 Jan 19702.0659.61Equation 3-1 applied19 Mar 19711.9854.60Equation 3-1 applied20 Nov 19720.8911.55Equation 3-1 applied20 Dec 19732.1162.89Equation 3-1 applied29 Oct 19741.6235.55Equation 3-1 applied21 Jan 19771.8848.75Equation 3-1 applied23 Feb 19782.3983.59Equation 3-1 applied24 Nov 19801.8245.45Equation 3-1 applied31 Dec 19812.1062.23Equation 3-1 applied31 Dec 19821.9049.88Equation 3-1 applied29 Jan 19842.4757.13Original SEPA Q	03 Sep 1963	2.09	61.56	Equation 3-1 applied
18 Sep 19651.8044.38Equation 3-1 applied03 Dec 19652.1766.99Equation 3-1 applied06 May 19672.0659.61Equation 3-1 applied07 Jan 19692.0860.91Equation 3-1 applied15 Jan 19702.0659.61Equation 3-1 applied19 Mar 19711.9854.60Equation 3-1 applied04 Feb 19721.9452.20Equation 3-1 applied20 Nov 19720.8911.55Equation 3-1 applied20 Dec 19732.1162.89Equation 3-1 applied29 Oct 19741.6235.55Equation 3-1 applied21 Jan 19771.8848.75Equation 3-1 applied29 Jan 19761.5733.32Equation 3-1 applied21 Jan 19771.8848.75Equation 3-1 applied23 Feb 19782.3983.59Equation 3-1 applied24 Nov 19801.8245.45Equation 3-1 applied31 Dec 19812.1062.23Equation 3-1 applied31 Dec 19842.4757.13Original SEPA Q	25 Mar 1964	1.83	45.99	Equation 3-1 applied
03 Dec 19652.1766.99Equation 3-1 applied06 May 19672.0659.61Equation 3-1 applied05 May 19682.2774.23Equation 3-1 applied07 Jan 19692.0860.91Equation 3-1 applied15 Jan 19702.0659.61Equation 3-1 applied19 Mar 19711.9854.60Equation 3-1 applied04 Feb 19721.9452.20Equation 3-1 applied20 Nov 19720.8911.55Equation 3-1 applied20 Dec 19732.1162.89Equation 3-1 applied29 Oct 19741.6235.55Equation 3-1 applied21 Jan 19771.8848.75Equation 3-1 applied23 Feb 19782.3983.59Equation 3-1 applied24 Nov 19801.8245.45Equation 3-1 applied31 Dec 19812.1062.23Equation 3-1 applied31 Dec 19842.4757.13Original SEPA Q	18 Sep 1965	1.80	44.38	Equation 3-1 applied
06 May 19672.0659.61Equation 3-1 applied05 May 19682.2774.23Equation 3-1 applied07 Jan 19692.0860.91Equation 3-1 applied15 Jan 19702.0659.61Equation 3-1 applied19 Mar 19711.9854.60Equation 3-1 applied04 Feb 19721.9452.20Equation 3-1 applied20 Nov 19720.8911.55Equation 3-1 applied20 Dec 19732.1162.89Equation 3-1 applied29 Oct 19741.6235.55Equation 3-1 applied21 Jan 19771.8848.75Equation 3-1 applied23 Feb 19782.3983.59Equation 3-1 applied25 Dec 19781.6034.64Equation 3-1 applied24 Nov 19801.8245.45Equation 3-1 applied31 Dec 19812.1062.23Equation 3-1 applied29 Jan 19761.8245.45Equation 3-1 applied25 Dec 19781.6034.64Equation 3-1 applied24 Nov 19801.8245.45Equation 3-1 applied31 Dec 19812.1062.23Equation 3-1 applied29 Jan 19842.4757.13Original SEPA Q	03 Dec 1965	2.17	66.99	Equation 3-1 applied
05 May 19682.2774.23Equation 3-1 applied07 Jan 19692.0860.91Equation 3-1 applied15 Jan 19702.0659.61Equation 3-1 applied19 Mar 19711.9854.60Equation 3-1 applied04 Feb 19721.9452.20Equation 3-1 applied20 Nov 19720.8911.55Equation 3-1 applied20 Dec 19732.1162.89Equation 3-1 applied29 Oct 19741.6235.55Equation 3-1 applied29 Jan 19761.5733.32Equation 3-1 applied21 Jan 19771.8848.75Equation 3-1 applied25 Dec 19781.6034.64Equation 3-1 applied04 Oct 19792.64105.62Equation 3-1 applied31 Dec 19812.1062.23Equation 3-1 applied33 Oct 19821.9049.88Equation 3-1 applied29 Jan 19842.4757.13Original SEPA Q	06 May 1967	2.06	59.61	Equation 3-1 applied
07 Jan 19692.0860.91Equation 3-1 applied15 Jan 19702.0659.61Equation 3-1 applied19 Mar 19711.9854.60Equation 3-1 applied04 Feb 19721.9452.20Equation 3-1 applied20 Nov 19720.8911.55Equation 3-1 applied20 Dec 19732.1162.89Equation 3-1 applied29 Oct 19741.6235.55Equation 3-1 applied29 Jan 19761.5733.32Equation 3-1 applied21 Jan 19771.8848.75Equation 3-1 applied25 Dec 19782.3983.59Equation 3-1 applied24 Nov 19801.8245.45Equation 3-1 applied31 Dec 19812.1062.23Equation 3-1 applied31 Oct 19821.9049.88Equation 3-1 applied29 Jan 19842.4757.13Original SEPA Q	05 May 1968	2.27	74.23	Equation 3-1 applied
15 Jan 19702.0659.61Equation 3-1 applied19 Mar 19711.9854.60Equation 3-1 applied04 Feb 19721.9452.20Equation 3-1 applied20 Nov 19720.8911.55Equation 3-1 applied20 Dec 19732.1162.89Equation 3-1 applied29 Oct 19741.6235.55Equation 3-1 applied29 Jan 19761.5733.32Equation 3-1 applied21 Jan 19771.8848.75Equation 3-1 applied25 Dec 19782.3983.59Equation 3-1 applied04 Oct 19792.64105.62Equation 3-1 applied24 Nov 19801.8245.45Equation 3-1 applied31 Dec 19812.1062.23Equation 3-1 applied31 Oct 19821.9049.88Equation 3-1 applied29 Jan 19842.4757.13Original SEPA Q	07 Jan 1969	2.08	60.91	Equation 3-1 applied
19 Mar 19711.9854.60Equation 3-1 applied04 Feb 19721.9452.20Equation 3-1 applied20 Nov 19720.8911.55Equation 3-1 applied20 Dec 19732.1162.89Equation 3-1 applied29 Oct 19741.6235.55Equation 3-1 applied29 Jan 19761.5733.32Equation 3-1 applied21 Jan 19771.8848.75Equation 3-1 applied25 Dec 19782.3983.59Equation 3-1 applied24 Nov 19801.8245.45Equation 3-1 applied31 Dec 19812.1062.23Equation 3-1 applied31 Oct 19821.9049.88Equation 3-1 applied29 Jan 19842.4757.13Original SEPA Q	15 Jan 1970	2.06	59.61	Equation 3-1 applied
04 Feb 19721.9452.20Equation 3-1 applied20 Nov 19720.8911.55Equation 3-1 applied20 Dec 19732.1162.89Equation 3-1 applied29 Oct 19741.6235.55Equation 3-1 applied29 Jan 19761.5733.32Equation 3-1 applied21 Jan 19771.8848.75Equation 3-1 applied23 Feb 19782.3983.59Equation 3-1 applied25 Dec 19781.6034.64Equation 3-1 applied04 Oct 19792.64105.62Equation 3-1 applied24 Nov 19801.8245.45Equation 3-1 applied31 Dec 19812.1062.23Equation 3-1 applied13 Oct 19821.9049.88Equation 3-1 applied29 Jan 19842.4757.13Original SEPA Q	19 Mar 1971	1.98	54.60	Equation 3-1 applied
20 Nov 19720.8911.55Equation 3-1 applied20 Dec 19732.1162.89Equation 3-1 applied29 Oct 19741.6235.55Equation 3-1 applied29 Jan 19761.5733.32Equation 3-1 applied21 Jan 19771.8848.75Equation 3-1 applied23 Feb 19782.3983.59Equation 3-1 applied25 Dec 19781.6034.64Equation 3-1 applied04 Oct 19792.64105.62Equation 3-1 applied31 Dec 19812.1062.23Equation 3-1 applied13 Oct 19821.9049.88Equation 3-1 applied29 Jan 19842.4757.13Original SEPA Q	04 Feb 1972	1.94	52.20	Equation 3-1 applied
20 Dec 19732.1162.89Equation 3-1 applied29 Oct 19741.6235.55Equation 3-1 applied29 Jan 19761.5733.32Equation 3-1 applied21 Jan 19771.8848.75Equation 3-1 applied23 Feb 19782.3983.59Equation 3-1 applied25 Dec 19781.6034.64Equation 3-1 applied04 Oct 19792.64105.62Equation 3-1 applied24 Nov 19801.8245.45Equation 3-1 applied31 Dec 19812.1062.23Equation 3-1 applied13 Oct 19821.9049.88Equation 3-1 applied29 Jan 19842.4757.13Original SEPA Q	20 Nov 1972	0.89	11.55	Equation 3-1 applied
29 Oct 19741.6235.55Equation 3-1 applied29 Jan 19761.5733.32Equation 3-1 applied21 Jan 19771.8848.75Equation 3-1 applied23 Feb 19782.3983.59Equation 3-1 applied25 Dec 19781.6034.64Equation 3-1 applied04 Oct 19792.64105.62Equation 3-1 applied24 Nov 19801.8245.45Equation 3-1 applied31 Dec 19812.1062.23Equation 3-1 applied13 Oct 19821.9049.88Equation 3-1 applied29 Jan 19842.4757.13Original SEPA Q	20 Dec 1973	2.11	62.89	Equation 3-1 applied
29 Jan 19761.5733.32Equation 3-1 applied21 Jan 19771.8848.75Equation 3-1 applied23 Feb 19782.3983.59Equation 3-1 applied25 Dec 19781.6034.64Equation 3-1 applied04 Oct 19792.64105.62Equation 3-1 applied24 Nov 19801.8245.45Equation 3-1 applied31 Dec 19812.1062.23Equation 3-1 applied13 Oct 19821.9049.88Equation 3-1 applied29 Jan 19842.4757.13Original SEPA Q	29 Oct 1974	1.62	35.55	Equation 3-1 applied
21 Jan 19771.8848.75Equation 3-1 applied23 Feb 19782.3983.59Equation 3-1 applied25 Dec 19781.6034.64Equation 3-1 applied04 Oct 19792.64105.62Equation 3-1 applied24 Nov 19801.8245.45Equation 3-1 applied31 Dec 19812.1062.23Equation 3-1 applied13 Oct 19821.9049.88Equation 3-1 applied29 Jan 19842.4757.13Original SEPA Q	29 Jan 1976	1.57	33.32	Equation 3-1 applied
23 Feb 19782.3983.59Equation 3-1 applied25 Dec 19781.6034.64Equation 3-1 applied04 Oct 19792.64105.62Equation 3-1 applied24 Nov 19801.8245.45Equation 3-1 applied31 Dec 19812.1062.23Equation 3-1 applied13 Oct 19821.9049.88Equation 3-1 applied29 Jan 19842.4757.13Original SEPA Q	21 Jan 1977	1.88	48.75	Equation 3-1 applied
25 Dec 19781.6034.64Equation 3-1 applied04 Oct 19792.64105.62Equation 3-1 applied24 Nov 19801.8245.45Equation 3-1 applied31 Dec 19812.1062.23Equation 3-1 applied13 Oct 19821.9049.88Equation 3-1 applied29 Jan 19842.4757.13Original SEPA Q	23 Feb 1978	2.39	83.59	Equation 3-1 applied
04 Oct 19792.64105.62Equation 3-1 applied24 Nov 19801.8245.45Equation 3-1 applied31 Dec 19812.1062.23Equation 3-1 applied13 Oct 19821.9049.88Equation 3-1 applied29 Jan 19842.4757.13Original SEPA Q	25 Dec 1978	1.60	34.64	Equation 3-1 applied
24 Nov 19801.8245.45Equation 3-1 applied31 Dec 19812.1062.23Equation 3-1 applied13 Oct 19821.9049.88Equation 3-1 applied29 Jan 19842.4757.13Original SEPA Q	04 Oct 1979	2.64	105.62	Equation 3-1 applied
31 Dec 1981 2.10 62.23 Equation 3-1 applied 13 Oct 1982 1.90 49.88 Equation 3-1 applied 29 Jan 1984 2.47 57.13 Original SEPA Q	24 Nov 1980	1.82	45.45	Equation 3-1 applied
13 Oct 1982 1.90 49.88 Equation 3-1 applied 29 Jan 1984 2.47 57.13 Original SEPA Q	31 Dec 1981	2.10	62.23	Equation 3-1 applied
29 Jan 1984 2.47 57.13 Original SEPA Q	13 Oct 1982	1.90	49.88	Equation 3-1 applied
	29 Jan 1984	2.47	57.13	Original SEPA Q

04 Nov 1984	3.02	93.63	Original SEPA Q
01 Dec 1985	2.87	82.32	Original SEPA Q
11 Apr 1987	2.46	56.51	Original SEPA Q
25 Jan 1988	2.90	84.10	Original SEPA Q
20 Oct 1988	2.69	69.84	Original SEPA Q
17 Dec 1989	1.35	14.01	Original SEPA Q
05 Mar 1991	2.16	40.98	Original SEPA Q
04 Nov 1991	1.97	32.40	Original SEPA Q
01 Oct 1992	1.96	31.90	Original SEPA Q
01 Mar 1994	2.79	77.69	Original SEPA Q
12 Sep 1995	3.01	97.25	JBA Rating
10 Feb 1996	3.26	117.61	JBA Rating
04 Dec 1996	2.00	39.86	Original SEPA Rating
05 Apr 1998	2.37	56.40	Original SEPA Rating
15 Nov 1998	2.20	48.63	Original SEPA Rating
27 Apr 2000	2.85	80.74	Original SEPA Rating
12 Mar 2001	2.59	67.49	Original SEPA Rating
20 Jul 2002	2.11	44.70	Original SEPA Rating
23 Oct 2002	3.19	111.59	JBA Rating
19 Jan 2004	2.04	41.66	Original SEPA Rating
08 Jan 2005	1.91	36.22	Original SEPA Rating
25 Mar 2006	2.32	54.38	Original SEPA Rating
12 Feb 2007	2.48	61.88	Original SEPA Rating
22 Nov 2007	2.46	61.05	Original SEPA Rating
04 Sep 2009	2.78	77.32	Original SEPA Rating
02 Nov 2009	3.32	123.53	JBA Rating
11 Dec 2010	2.92	84.76	Original SEPA Rating
14 Aug 2012	1.71	28.55	Original SEPA Rating
23 Dec 2012	3.34	125.80	JBA Rating
06 Feb 2014	2.21	49.21	Original SEPA Rating
07 Oct 2014	2.36	56.16	Original SEPA Rating
08 Jan 2016	4.46	260.30	JBA Rating

Annual Probability [AP] (%)	Return Period (years)	River Ythan at Ellon Gauging Station. Single Site Statistical Method Flow: GL (m ³ /s)	River Ythan at Ellon Gauging Station. Single Site Statistical Method Flow: GEV (m ³ /s)	River Ythan at Ellon Gauging Station. Enhanced Single Site Statistical Method Flow: GL (m ³ /s)	River Ythan at Ellon Gauging Station. Enhanced Single Site Statistical Method Flow: GEV (m ³ /s)
50	2	56.82	57.12	56.82	56.83
20	5	79.66	81.89	78.99	81.06
10	10	97.35	100.48	95.83	98.82
4	25	124.37	126.81	121.13	123.41
3.33	30	130.42	132.37	126.74	128.53
2	50	148.82	148.62	143.69	143.36
1.33	75	165.14	162.27	158.60	155.66
1	100	177.76	172.40	170.06	164.71
0.5	200	212.22	198.41	201.05	187.65
0.2	500	268.21	236.66	250.68	220.67
0.1	1000	320.25	268.86	296.15	247.89
3.33 +CC	30 +CC	161.72	164.14	157.16	159.38
0.5 +CC	200 +CC	263.15	246.03	249.30	232.68
0.5 specific discharge	200	0.40	0.37	0.38	0.35
1 growth factor	100	3.13	3.02	2.99	2.90

Table 3-4: Peak flow estimates: statistical estimates for the extended Ythan at Ellon record with adjusted catchment area

Annual Probability [AP] (%)	Return Period (years)	River Ythan at Ellon Single Site Statistical Method Flow: GL (m³/s)	River Ythan at Ellon Single Site Statistical Method Flow: GL confidence limits (m ³ /s)	River Ythan at Ellon Single Site Statistical Method Flow: GEV (m³/s)	River Ythan at Ellon Single Site Statistical Method Flow: GEV confidence limits (m ³ /s)
50	2	57.60	52.587 - 62.648	57.13	51.966 - 62.141
20	5	80.46	72.011 - 89.891	81.88	73.221 - 91.992
10	10	98.17	84.214 - 115.264	100.45	86.116 - 118.760
4	25	125.20	99.861 - 158.818	126.75	100.137 - 164.200
3.33	30	131.26	103.029 - 169.272	132.3	102.471 - 175.010
2	50	149.67	112.146 - 203.315	148.52	108.992 - 207.749
1.33	75	165.99	119.657 - 234.707	162.15	113.646 - 237.761
1	100	178.62	124.685 - 261.059	172.26	116.497 - 260.089
0.5	200	213.07	136.909 - 336.998	198.22	120.790 - 324.509
0.2	500	269.04	152.785 - 478.252	236.37	125.638 - 433.665
0.1	1000	321.06	166.442 - 625.617	268.47	128.033 - 538.880

Table 3-5: Peak flow estimates: confidence limits for the extended Ythan at Ellon

Table 3-6: Peak flow estimate comparison between the 2005 and 2010 reports and the extended Ellon record excluding the 2016 event

Return Period (years)	Annual Probability [AP] (T)	2005 study River Ythan at Ellon. Statistical pooling group analysis: GEV (m ³ /s)	2010 study River Ythan at Ellon, Statistical ESS analysis: GEV (m ³ /s)	2018 study River Ythan at Ellon, Statistical SS analysis: GL excluding 2016 (m ³ /s)
2	50	57.7	58.8	56.47
5	2	78.6	79.4	76.00
10	10	91.6	92.9	89.47
25	4	106.9 109.8		108.16
50	50 2		122.3	123.62
75	1.3	123.2	129.5	133.34
100	1	127.5	134.5	140.59
200	0.5	137.0	146.7	159.32
200 +CC	0.5 +CC	171.3	176.0	197.56

Figure 3-1: AMAX series at Ellon

Ythan @ Ellon

Figure 3-2: Extended AMAX series at Ellon

Figure 3-3: Growth curves for the extended Ellon record

Ythan @ Ellon

For the Ythan, observed hydrographs at Ellon were investigated in order to identify whether or not they could be used as the basis for a design hydrograph. Figure 3-6 shows example stage hydrographs for the 10 largest flood events at Ellon, together with an average hydrograph calculated from those events. In each case, the hydrographs have been normalised by peak stage in order to bring them to a common scale. It can be seen that several of the hydrographs have double peaks including the 2016 and 2012 events - the first and second largest events on record. Additionally, a number of the hydrographs have peaks on the falling limb.

Observed hydrograph information was also considered together with rainfall data from the Rothienorman TBR in order to provide an estimate of lag time (LAG) at Ellon and therefore guide an appropriate catchment wide storm duration. The Rothienorman gauge is the nearest TBR to the upper catchment (the next nearest TBR, Esslemont House, and the manual raingauges at Meldrum House and Haddow House, are located further downstream in the catchment away from the Ythan headwaters and are therefore less likely to be representative of rainfall in the upper catchment which is usually very important in contributing to flood response; also note that Met Office raingauge and radar data at the required 15 min interval were not available). The Rothienorman data only covers the period 2001 to 2018, therefore LAG analysis was carried out on the 10 largest events within that period.

Combined analysis of the top 10 events within the period 2001 to 2017 yielded a geometric mean LAG value of 10.5 h with a range of 3.0 h for the November 2009 event to 18.8 h for the October 2014 event. Back-calculation from this LAG value yielded a Tp of 8.21 h and storm duration of $15 h^{15}$.

Following this analysis the November 2009 event hydrograph was selected as the model input hydrograph. This was because the 2009 event: (i) shows a smooth rising and falling limb; (ii) represents the third largest event on record at the gauging station and (iii) analysis of observed rainfall showed it has a similar storm duration (17 h from the onset of rainfall to the end of the rainfall event) to that calculated from the combined basic LAG analysis. As the design hydrograph has been estimated from observed data, the adopted storm duration was 17 h¹⁶, with an overall hydrograph duration of approximately 194 h (Figure 3-8).

For modelling, for a given AP value, the hydrograph will be scaled using the peak flow at Ellon estimated using the FEH Statistical method (single site analysis, Table 3-4).

JBA

¹⁵ Per equations 2.9 and 3.1 of FEH Volume 4.

¹⁶ Note that this is a catchment wide storm duration, appropriate to the River Ythan. Smaller tributaries such as the Broomies, Modley, Fortree and Hillhead Burn will have a shorter time to peak and critical storm duration. Detailed consideration and modelling of these watercourses is given in Section 4.

Figure 3-6: Normalised hydrographs for the top 10 events at Ellon

Figure 3-7: November 2009 storm duration analysis

Figure 3-8: Observed November 2009 hydrograph at Ellon scaled to the SS GL 200 year peak flow.

3.4.1 Analysis of observed data: tidal influence

The National Tidal Limit (NTL) is located approximately 600 m upstream of the A90. The hydraulic modelling undertaken within the Ellon Flood Study⁸ indicated the lower reach of the model to be tidally influenced, and it is therefore necessary to consider the potential flood risk to the site from extreme sea levels.

As part of the 2005 Flood Study, a water level logger with stageboard was installed by Mountain Environments Ltd adjacent to the right pier of the A90 road bridge on 17 February 2006 on behalf of Aberdeenshire Council. This was situated at the downstream boundary of the hydraulic model and was set to record level data at 15 minute intervals. At the time of undertaking analysis, data had been recorded from 17 February 2006 at 13:33 to 5 July 2006 at 14:59, giving five months of 15 minute data.

Tide levels for the tidal gauge at Aberdeen were downloaded from the British Oceanographic Data Centre (BODC) website¹⁷ for the period 17 February 2006 to 5 July 2006 along with stage data from the Ellon gauging station and is plotted in Figure 3-9. On inspection of Figure 3-9 it can be seen that unfortunately there are extended gaps within the Aberdeen tidal data; this was due to technical issues.

Data collected at the Aberdeen tide gauge show a typical sine curve. As the logger is situated near to the upper limit of the tide, the base level of the level data recorded at the A90 road bridge logger at times of low tide (or no tidal influence) is controlled by flows and hence the normal river level.

Figure 3-9: River Level and Tidal Data - River Ythan at Ellon

JBA

¹⁷ The data were supplied by the British Oceanographic Data Centre as part of the function of the National Tidal & Sea Level Facility, hosted by the Proudman Oceanographic Laboratory and funded by the Department for Environment, Food & Rural Affairs and the Natural Environment Research Council. https://www.bodc.ac.uk/data/hosted_data_systems/sea_level/uk_tide_gauge_network/ [Accessed 9 February 2018]

The aim of analysis on the stage data recorded at A90 road bridge Ellon was to determine a relationship between levels at Ellon and the tide gauge at Aberdeen, for which there is an extensive historical record, and hence use this relationship to adjust the extreme sea level data for Aberdeen to create extreme sea level values for the River Ythan at Ellon. The resulting regression equation is displayed below.

Equation 3-2: Tidal Regression between Aberdeen and Ellon

 $\begin{array}{l} Y = 0.1052 \; X^2 + 0.5964 \; X + 0.441 \\ r^2 = 0.9874 \\ Y = Ellon, \; X = Aberdeen \end{array}$

This equation will be used to adjust observed tidal data at Aberdeen to Ellon for calibration runs.

3.4.2 Design tidal levels

Appropriate tidal levels were required as a downstream boundary condition to the hydraulic model. Design tidal levels were therefore estimated using the standard techniques for estimating coastal flood boundary (CFB) conditions¹⁸, updated from the base year of 2008 to the study year of 2018 (Table 3-7). In order to provide an allowance for climate change on the tidal estimates, the 95th percentile to 2080 for the UKCP09 high emissions scenario was obtained¹⁹. This corresponds to a 0.46 m rise in sea level by the 2080s from 2018 (Table 3-7).

The CFB estuarine output for the nearest estuary CFBD data point within the Ythan (3208-8-Main-M, located at OS NGR NJ 981 300 approximately 800 m downstream of the A90 road bridge near the downstream point of the model) gives a 2018 0.5% AP (200 year) still water level (SWL) of 3.18 mAOD for the River Ythan. These levels in the CFB are derived solely on tidal constituents and surge predictions at the mouth of the Ythan and do not integrate any fluvial predictions. Within estuaries, CFB levels rely on the CFB predictions derived from coastal gauges adapted to better represent the estuary using typical surge characteristics for UK estuaries. This is largely appropriate for extreme levels within estuaries for large return periods.

Annual Probability [AP] (%)	Return period (years)	Level (mAOD) (2008)	Level (mAOD) (2018)	Level (mAOD) (2080s)
50	2	2.70	2.75	3.21
20	5	2.79	2.84	3.30
10	10	2.86	2.91	3.37
4	25	2.95	3.00	3.46
3.33	30	2.96	3.02	3.47
2	50	3.01	3.06	3.52
1.33	75	3.05	3.10	3.56
1	100	3.07	3.12	3.58
0.5	200	3.13	3.18	3.64
0.2	500	3.20	3.25	3.71
0.1	1000	3.26	3.31	3.77

Table 3-7: Design Tide Levels

¹⁸ The Environment Agency (2011) Coastal flood boundary conditions for UK mainland and islands Project: SC060064/TR2: Design sea levels

¹⁹ http://ukclimateprojections-ui.defra.gov.uk/ui/admin/login.php

3.4.3 Design stage hydrograph

A design stage hydrograph was obtained from Admiralty Total Tide (ATT) for the Ythan and was scaled to the appropriate still water levels (above) for the hydraulic model runs.

Figure 3-10: Design Tidal Levels

3.4.4 Joint Probability Analysis

In order to examine the degree of dependence between tide and flow, published Defra and Environment Agency²⁰ guidance was consulted. This guidance uses the measure χ as an indication of dependence, where low values of χ indicate low correlation and high values of χ indicate strong correlation. The published values²¹ include a χ value of 0.01 calculated between daily mean flow data from Ellon and surge data at Aberdeen, with 95% confidence limits for a χ of between -0.01 and 0.04. This indicates low level of correlation between flow and surge. The published χ value of 0.01 was used and a Joint Probability Matrix calculated (Table 3-8). This matrix shows various combinations of marginal return periods that result in a joint probability return period event. As the level of correlation is low, the influence of one source is greater e.g. either predominantly fluvial or tidal. For example, in this case, a 0.5% AP (200 year) event could come from many different combinations including a 0.5% AP (200 year) fluvial (or tidal) event with occurring with a less than 1 year tidal (or fluvial) event or it could come from a 1% AP (100 year) fluvial (or tidal) event occurring with a less than 1 year fluvial (or tidal) event.

A local estimate of χ was also calculated using local data from the Aberdeen tide gauge (where the surge component was extracted by subtracting the astronomical tide at Ellon calculated using Total Tide software) and daily mean flow data for the Ythan. The period of data was available at the time of the analysis was May 1983 to December 2016, this resulted in a χ value of -0.015 which is approximately similar to the published value of 0.01 and 95% confidence limits. Given the longer period of record used in the published study, a χ value of 0.01 was adopted for this work.

JBA

²⁰ Defra / Environment Agency Flood and Coastal Defence R&D Programme Use of Joint Probability Methods in Flood Management A Guide to Best Practice R&D Technical Report FD2308/TR2 March 2005

²¹ Defra / Environment Agency Flood and Coastal Defence R&D Programme Joint Probability: Dependence Mapping and Best Practice: Technical Report on Dependence Mapping R&D Technical Report FD2308/TR1

			Jc	oint return	n period (y	/ears)			
		1	2	10	30	50	100	200	1000
		Margi	nal return	period (ye	ars) for sti	II water lev	vel or flow		
Marginal	0.1	0.001	0.004	0.025	0.100	0.900	10.000	40.000	1000.000
return	0.16	0.001	0.003	0.016	0.063	0.563	6.250	25.000	625.000
(years)	0.5	0.000	0.001	0.005	0.020	0.180	2.000	8.000	200.000
for flow	1		0.000	0.001	0.005	0.045	0.500	2.000	50.000
or still water	2			0.001	0.002	0.018	0.200	0.800	20.000
level	5				0.001	0.009	0.100	0.400	10.000
	10					0.004	0.040	0.160	4.000
	25					0.003	0.033	0.133	3.333
	30						0.020	0.080	2.000
	50						0.013	0.053	1.333
-	100						0.010	0.040	1.000
	200							0.020	0.500
	500								0.200
	1000								0.100

Table 3-8: Joint probability matrix calculated using the published χ value of 0.01
4 Flood Estimation: Modley, Broomies, Fortree and Hillhead Burns

4.1 Peak flows: overall approach

The four tributaries are ungauged and have small catchment areas and a Rainfall Runoff type approach was therefore explored for flood estimation for those catchments, with checks also made using the FEH Statistical method. There are currently two main alternative rainfall runoff approaches which are accepted for use by SEPA in Scotland:

- FEH Rainfall Runoff (RR) method. This is the traditional method which uses FEH99²² rainfall information. An assumption of the FEH Rainfall Runoff method is that, for floods with AP values of greater than 0.1% (i.e. more frequent than 1000 years), the AP value of the underlying rainfall event is smaller than that of the flow event. For example, the 0.5% AP (200 year) event is estimated to be generated from a rainstorm with an AP value of 0.41% (247 years). An Areal Reduction Factor (ARF) is used to apply the point storm depth across the catchment and losses (used to calculate net rainfall) are calculated from Standard Percentage Runoff (SPR) and the Catchment Wetness Index (CWI).
- 2. ReFH2. This is the Revitalised Rainfall Runoff method, calibrated for Scotland and using FEH13²³ rainfall. FEH13 refers to an updated approach to the design rainfall calculation which is based on a more extensive rain gauge network than was available for FEH99 and should therefore be more accurate (ReFH2 can also optionally be run with FEH99 rainfall). In general, for Scotland, FEH13 often generates higher rainfall amounts for short duration storms than FEH99. An assumption of ReFH2 is that the AP value of the underlying rainfall event is equal to that of the flow event. For example, the 0.5% AP (200 year) event is estimated to be generated from a rainstorm with an AP value of 0.5% (200 years). ReFH2 uses both an ARF and also a Seasonal Correction Factor (SCF) to apply seasonally dependent rainfall across the catchment. Losses are calculated using a more formal representation of soil storage than that used in the FEH Rainfall Runoff method.

While both methods were considered for each site, following basic LAG analysis using available hydrometric data in the River Ythan area (the Keithfield Burn at Mill of Keithfield and Rothienorman TBR), along with statistical pooling analysis to inform the choice of method, the RR methodology was selected as the most appropriate choice of peak flow.

4.1.1 Basic LAG analysis at Mill of Keithfield

The Keithfield Burn has a level only gauging station at Mill of Keithfield. This donor site is located approximately 12 km northwest of Ellon and has a relatively steep catchment which drains east towards the River Ythan and has a catchment area of approximately 18 km². The geology of the area comprises metamorphic bedrock overlain with superficial glacial deposits. Land use is predominately arable and pasture with some forest habitats. This catchment was selected because of its similarity and geographical closeness to the subject sites and for which both rainfall and stage data were available. The TBR at Rothienorman was selected as the source of 15 min rainfall data. This raingauge is located circa 9 km northwest of the Keithfield Burn catchment, but it is the nearest TBR to the upper catchment and was therefore used out of necessity (the next nearest raingauges at Meldrum House and Haddow House, were located further downstream in the catchment away from the Keithfield Burn headwaters and are therefore likely to be less representative of rainfall in the upper catchment which is usually very important in contributing to flood response; also note that Met Office raingauge and radar data at the required 15 min interval were not available).

Observed hydrograph information from the Mill of Keithfield gauge was considered together with rainfall data from the Rothienorman TBR in order to provide an estimate of lag time (LAG) and therefore back calculate storm duration. Combined analysis of the top 8 events yielded a geometric mean LAG value of 5.85 h with a range of 2.7 h for the December 2012 event to 8.6 h for the December 2010 event. Back-calculation from this LAG value yielded a Tp of 4.72 h and storm duration of 8.64 h. A similar storm duration was estimated at Mill of Keithfield using the FEH Rainfall Runoff method with catchment descriptors (Tp of 4.33 h and storm duration of 8.25 h). The ReFH2 methodology in contrast had a significantly different Tp and storm duration (Table 4-1). As the

²² FEH99 refers to the design rainfall approach originally published in FEH Volume 2: Rainfall Frequency Estimation (1999). 23 The FEH13 approach was published in the Environment Agency report - Reservoir Safety - Long Return Period Rainfall, Project: FD2613 WS 194/2/39, 2013.

Keithfield Burn is similar to the burns draining to the Ythan, it was assumed that the FEH Rainfall Runoff method would not need modification (with respect to Tp) if it was adopted for peak flow estimation. ReFH2 was less consistent with the observed analysis.

	Mill of Keithfield observed data	RR	ReFH2
Geomean LAG	5.85		
Тр	4.72	4.33	3.51
Duration (h)	8.64	8.25	6.50

Table 4-1: Storm duration comparison at Mill of Keithfield

4.1.2 Peak flow estimates for the Ellon burns

A comparison of the methods used (statistical and rainfall runoff variants) for the burns are provided in the following tables.

In all cases, the following conclusions were made:

- The Statistical pooling method gave the highest flow estimates for the Broomies Burn and Modley Burn. For example, for the Broomies Burn the 0.5% AP (200 year) event is estimated to be circa 5.34 m³/s using the pooling method and 5.10 m³/s using the RR method.
- In contrast, the FEH RR method gave the largest estimates for the Fortree and Hillhead Burns on the right bank of the Ythan. For example, for the Fortree Burn 0.5% AP (200 year) event is estimated to be circa 2.34 m³/s using the RR method and 1.88 m³/s using the statistical pooling method.
- In all cases ReFH2 with FEH99 rainfall gave higher peak flow estimates than using FEH13 rainfall.
- The FEH statistical method and RR results are relatively similar. For example, for the Modley Burn, the 0.5% AP (200 year) event is estimated to be 3.09 m³/s using the RR approach and 3.18 m³/s using statistical method. This is compared to the ReFH2 with FEH13 method which gives a 0.5% AP (200 year) event of 2.06 m³/s.

The agreement between the FEH statistical and RR methods, along with the LAG analysis at Mill of Keithfield supported the use of FEH RR for peak flow estimation on the Ellon tributaries. The FEH Rainfall Runoff method was therefore adopted for peak flow estimation.

Annual Probability [AP] (%)	Return Period (years)	FEH Rainfall Runoff flow (m³/s)	ReFH2 with FEH99 rainfall flow (m ³ /s)	ReFH2 with FEH13 rainfall flow (m ³ /s)	Statistical pooling flow (m³/s)
50	2	1.64	1.44	1.26	1.53
20	5	2.24	1.79	1.64	2.09
10	10	2.61	2.07	1.94	2.53
4	25	3.30	2.51	2.41	3.19
3.33	30	3.45	2.61	2.51	3.34
2	50	3.88	2.91	2.83	3.79
1.33	75	4.18	3.17	3.09	4.19
1	100	4.44	3.38	3.28	4.50
0.5	200	5.10	3.93	3.78	5.34
0.2	500	6.12	4.82	4.47	6.71
0.1	1000	7.19	5.65	5.02	7.98
3.33 +CC	30 +CC	4.28	3.24	3.12	4.14
0.5 +CC	200 +CC	6.32	4.87	4.68	6.62
Critical duration (hrs)		8.25	6.30	6.30	

Table 4-2: Broomies Burn with adjusted area peak flow comparison

Annual Probability [AP] (%)	Return Period (years)	FEH Rainfall Runoff flow (m³/s)	ReFH2 with FEH199 rainfall flow (m ³ /s)	ReFH2 with FEH13 rainfall flow (m ³ /s)	Statistical pooling flow (m³/s)
50	2	0.99	0.82	0.68	0.91
20	5	1.36	1.02	0.88	1.24
10	10	1.58	1.19	1.05	1.50
4	25	1.97	1.44	1.30	1.89
3.33	30	2.06	1.49	1.36	1.98
2	50	2.34	1.66	1.53	2.25
1.33	75	2.52	1.82	1.68	2.49
1	100	2.68	1.93	1.79	2.67
0.5	200	3.09	2.25	2.06	3.18
0.2	500	3.72	2.76	2.44	4.00
0.1	1000	4.39	3.23	2.75	4.77
3.33 +CC	30 +CC	2.55	1.85	1.68	2.46
0.5 +CC	200 +CC	3.38	2.79	2.55	3.94
Critical storm duration (hrs)		6.75	6.30	6.30	

Table 4-3: Modley Burn with adjusted area peak flow comparison

Table 4-4: Hillhead Burn with adjusted area peak flow comparison

Annual Probability [AP] (%)	Return Period (years)	FEH Rainfall Runoff flow (m³/s)	ReFH2 with FEH99 rainfall flow (m ³ /s)	ReFH2 with FEH13 rainfall flow (m ³ /s)	Statistical pooling flow (m³/s)
50	2	0.26	0.18	0.14	0.22
20	5	0.37	0.22	0.19	0.29
10	10	0.43	0.26	0.23	0.36
4	25	0.52	0.32	0.28	0.45
3.33	30	0.54	0.33	0.30	0.47
2	50	0.59	0.37	0.33	0.54
1.33	75	0.65	0.40	0.37	0.59
1	100	0.70	0.42	0.39	0.64
0.5	200	0.81	0.49	0.45	0.76
0.2	500	0.98	0.61	0.54	0.96
0.1	1000	1.16	0.71	0.60	1.15
3.33 +CC	30 +CC	0.67	0.41	0.37	0.58
0.5 +CC	200 +CC	1.00	0.61	0.56	0.94
Critical storm duration (hrs)		3.75	5.30	5.30	

Annual Probability [AP] (%)	Return Period (years)	FEH Rainfall Runoff flow (m³/s)	ReFH2 with FEH99 rainfall flow (m ³ /s)	ReFH2 with FEH13 rainfall flow (m ³ /s)	Statistical pooling flow (m³/s)
50	2	0.76	0.52	0.41	0.54
20	5	1.06	0.64	0.54	0.73
10	10	1.24	0.75	0.65	0.88
4	25	1.50	0.91	0.81	1.11
3.33	30	1.55	0.94	0.85	1.16
2	50	1.72	1.05	0.96	1.32
1.33	75	1.88	1.15	1.05	1.46
1	100	2.01	1.22	1.12	1.57
0.5	200	2.34	1.42	1.29	1.88
0.2	500	2.84	1.74	1.54	2.38
0.1	1000	3.36	2.04	1.73	2.85
3.33 +CC	30 +CC	1.92	1.17	1.05	1.44
0.5 +CC	200 +CC	2.90	1.76	1.60	2.33
Critical storm duration (hrs)		3.75	5.30	5.30	

Table 4-5: Fortree Burn with adjusted area peak flow comparison

4.1.3 Storm durations

Two storm durations are to be modelled to represent the tributary inflows. These are: 17 h based on the Ythan and 6.75 h based on the Broomies and Modley Burns. Inclusion of the Hillhead and Frotree Burns in the Ythan model would also require a 3.75 h storm duration, but these burns may be modelled separately. Peak flows for these storm durations using the FEH RR approach are given below.

Table 4-6: RR peak flow estimates for the Broomies Burn for the three storm durations

Annual Probability [AP] (%)	Return period (years)	FEH Rainfall Runoff Storm duration 17 hours (m ³ /s)	FEH Rainfall Runoff Storm duration 6.75 hours (m ³ /s)	FEH Rainfall Runoff Storm duration 3.75 hours (m ³ /s)
50	2	1.62	1.59	1.37
20	5	2.27	2.17	1.88
10	10	2.72	2.53	2.21
4	25	3.37	3.15	2.65
3.33	30	3.52	3.28	2.75
2	50	3.94	3.71	3.03
1.33	75	4.23	4.01	3.32
1	100	4.48	4.25	3.55
0.5	200	5.12	4.90	4.10
0.2	500	6.11	5.88	4.97
0.1	1000	7.15	6.92	5.87
3.33 +CC	30 +CC	4.36	4.07	3.41
0.5 +CC	200 +CC	6.35	6.08	5.08

Annual Probability [AP] (%)	Return period (years)	FEH Rainfall Runoff Storm duration 17 hours (m ³ /s)	FEH Rainfall Runoff Storm duration 6.75 hours (m ³ /s)	FEH Rainfall Runoff Storm duration 3.75 hours (m ³ /s)
50	2	0.95	0.99	0.87
20	5	1.33	1.36	1.20
10	10	1.61	1.58	1.41
4	25	2.00	1.97	1.70
3.33	30	2.08	2.06	1.76
2	50	2.33	2.34	1.94
1.33	75	2.51	2.52	2.13
1	100	2.66	2.68	2.27
0.5	200	3.04	3.09	2.64
0.2	500	3.64	3.72	3.20
0.1	1000	4.27	4.39	3.80
3.33 +CC	30 +CC	2.58	2.55	2.18
0.5 +CC	200 +CC	3.77	3.83	3.27

Table 4-7: RR peak flow estimates for the Modley Burn for the three storm durations

Table 4-8: RR peak flow estimates for the Hillhead Burn for the three storm durations

Annual Probability [AP] (%)	Return period (years)	FEH Rainfall Runoff Storm duration 17 hours (m ³ /s)	FEH Rainfall Runoff Storm duration 6.75 hours (m ³ /s)	FEH Rainfall Runoff Storm duration 3.75 hours (m ³ /s)
50	2	0.22	0.27	0.26
20	5	0.32	0.37	0.37
10	10	0.38	0.44	0.43
4	25	0.47	0.55	0.52
3.33	30	0.49	0.57	0.54
2	50	0.55	0.65	0.59
1.33	75	0.60	0.70	0.65
1	100	0.63	0.74	0.70
0.5	200	0.72	0.86	0.81
0.2	500	0.86	1.03	0.98
0.1	1000	1.01	1.22	1.16
3.33 +CC	30 +CC	0.61	0.71	0.67
0.5 +CC	200 +CC	0.89	1.07	1.00

Annual Probability [AP] (%)	Return period (years)	FEH Rainfall Runoff Storm duration 17 hours (m ³ /s)	FEH Rainfall Runoff Storm duration 6.75 hours (m ³ /s)	FEH Rainfall Runoff Storm duration 3.75 hours (m ³ /s)
50	2	0.65	0.78	0.76
20	5	0.91	1.08	1.06
10	10	1.10	1.26	1.24
4	25	1.37	1.58	1.50
3.33	30	1.42	1.65	1.55
2	50	1.60	1.87	1.72
1.33	75	1.72	2.02	1.88
1	100	1.82	2.14	2.01
0.5	200	2.08	2.47	2.34
0.2	500	2.49	2.98	2.84
0.1	1000	2.91	3.51	3.36
3.33 +CC	30 +CC	1.76	2.05	1.92
0.5 +CC	200 +CC	2.58	3.06	2.90

Table 4-9: RR peak flow estimates for the Fortree Burn for the three storm durations

4.2 Lateral inflows for modelling of the Ythan

Within the hydraulic model, lateral inflows to the Ythan will be modelled using ReFH unit hydrographs. Calibration runs will be undertaken using rainfall data from the Esslemont House raingauge. Lateral inflows for the design runs will be represented using ReFH unit hydrographs scaled to the RR estimates detailed in Section 4.1.3.

5 Comparison between the 2005, 2010 and 2018 studies

The 2005 JBA study provided peak flow estimates for the Ythan at Ellon which were updated in 2010. Those estimates, together with the corresponding values obtained in this study are listed in the accompanying table. In summary, the differences are as follows:

- Peak flows in the 2005 study were obtained using the statistical pooling group analysis with a GEV distribution, whereas the 2010 study used the updated statistical approach of ESS analysis but again using the GEV distribution. This study will use the SS GL approach.
- The 0.5% AP (200 year) peak flow was estimated to be 137 m³/s in 2005, 147 m³/s in 2010 and 212.22 in 2018.
- The difference between the present and previous studies can be attributed to the very large 2016 event (260 m³/s, assuming no artificial influences upon stage such as bridge/debris blockage during this event, Appendix E).

Return Period (years)	Annual Probability [AP] (T)	2005 study River Ythan at Ellon. Statistical pooling group analysis: GEV (m ³ /s)	2010 study River Ythan at Ellon, Statistical ESS analysis: GEV (m ³ /s)	2018 study River Ythan at Ellon, Statistical SS analysis: GL (m³/s)
2	50	57.7	58.8	56.82
5	2	78.6	79.4	79.66
10	10	91.6	92.9	97.35
25	4	106.9	109.8	124.37
50	2	117.5	122.3	148.82
75	1.3	123.2	129.5	165.14
100	1	127.5	134.5	177.76
200	0.5	137.0	146.7	212.22
200 +CC	0.5 +CC	171.3	176.0	263.15

Table 5-1: Comparison with 2005 and 2010 estimates

6 Conclusions

The River Ythan has a history of flooding dating back to at least 1642 and the main risk area is at Ellon. In addition to direct flood risk from the fluvial Ythan, flood risk at Ellon is complicated by a tidal influence and by four small watercourses (the Modley, Broomies, Hillhead and Fortree Burns). Hydrology estimates were required as input to a linked 1D/2D hydraulic model of the Ythan for use in flood mapping. Those estimates included the following.

- Peak flow estimates on the:
 - River Ythan at Ellon gauging station. FEH statistical methods were investigated for peak flow estimation and the adopted method was Single Site (SS) analysis with a GL distribution using an extended AMAX series from the Ardlethen gauge. A new rating, previously agreed with SEPA for use in this study, was applied to the Ythan data, prior to the analysis being undertaken. The 0.5% Annual Probability (AP, 200 year flood) was estimated to be circa 212.22 m³/s for the Ythan.
 - Modley Burn, Broomies Burn, Hillhead Burn and Fortree Burn at their confluence with the River Ythan. A variety of methods were investigated for peak flow estimation, and the adopted method in each case was the FEH RR method. The 0.5% Annual Probability (AP, 200 year flood) flood was estimated to be 4.90 m³/s, 3.09 m³/s, 0.81 m³/s and 2.34 m³/s for the Broomies, Modley, Hillhead and Fortree Burns respectively for their given critical storm duration.
- Fluvial hydrographs and critical storm durations. Hydrograph analysis indicated many of the historical flood events on the Ythan are double peaked. The November 2009 event hydrograph (the third largest event on record) was therefore selected as the design hydrograph as it is single peaked and has a similar storm duration (17 h) to that derived from the basic LAG analysis. Basic LAG analysis at Ellon on the combined top 10 events yielded a time to peak (Tp) of 8.21 h and storm duration of 15 h. The 2009 design hydrograph will be scaled to the FEH statistical estimates for use in modelling. The Ythan and burns have very different catchment areas and it was recommended that two critical durations be tested in the hydraulic modelling: one long (17 h, based on the Ythan) and one short (6.75 h, based on the Modley and Broomies Burn). These values were based upon the RR critical storm duration.
- **Coastal still water levels for the tidal element**. These were obtained from the Coastal Flood Boundary method. The 0.5% AP (200 year) event was estimated to be 3.18 mAOD.
- **Tidal stage hydrograph**. This was derived from a representative event at the Aberdeen tide gauge.
- Joint probability. The joint probability between flow on the Ythan at Ellon and surge on the Ythan estuary was considered using the published FD2308 approach. A local chi value was also calculated between Aberdeen and Ellon and was found to be similar to the published value, showing a low correlation between flow and surge. The resulting joint probability matrix will be applied in the model runs.

Table 6-1: Summary	of design	peak flows
--------------------	-----------	------------

Annual Probability [AP] (%)	Return Period (years)	River Ythan at Ellon Gauging Station. Single Site Statistical Method Flow: GL (m ³ /s)	Broomies Burn FEH Rainfall Runoff storm duration 6.75 hours (m ³ /s)	Modley Burn FEH Rainfall Runoff storm duration 6.75 hours (m ³ /s)	Hillhead Burn FEH Rainfall Runoff storm duration 3.75 hours (m ³ /s)	Fortree Burn FEH Rainfall Runoff storm duration 3.75 hours (m ³ /s)
50	2	56.82	1.59	0.99	0.26	0.76
20	5	79.66	2.17	1.36	0.37	1.06
10	10	97.35	2.53	1.58	0.43	1.24
4	25	124.37	3.15	1.97	0.52	1.50
3.33	30	130.42	3.28	2.06	0.54	1.55
2	50	148.82	3.71	2.34	0.59	1.72
1.33	75	165.14	4.01	2.52	0.65	1.88
1	100	177.76	4.25	2.68	0.70	2.01
0.5	200	212.22	4.90	3.09	0.81	2.34
0.2	500	268.21	5.88	3.72	0.98	2.84
0.1	1000	320.25	6.92	4.39	1.16	3.36
3.33 +CC	30 +CC	161.72	4.07	2.55	0.67	1.92
0.5 +CC	200 +CC	263.15	6.08	3.83	1.00	2.90
0.5 specific discharge	200	0.40	0.80	0.85	1.14	1.13
Critical duration for modelling (h)		17	6.75	6.75	3.75	3.75

Appendices

A Statistical Method - Additional Outputs

This section provides further information on the statistical method.

A.1 Ythan at Ellon

F	EH STATISTICAL FLOOD ES	TIMATION SUMMARY SHEET								
Site	Ellon Gauging Station									
NGR	NJ946303	946303								
Type of	Peak flows for model									
problem/objective of	2, 5, 10, 25, 30, 50, 75, 10	00, 200, 200cc, 500, 1000								
Type of catchment	Rural									
QMED also and	56.8	m ³ /s								
	Donor/ Analogue	Sites Considered								
Site name	Ythan@Ellon									
Station number	10002									
	N 1046202									
NGR Drovimity (km)	0.00									
Adjustmont	1.0532									
Site Chocon	1.0552 V									
She Chosen	I									
OMED adjusted by										
QMED site adjusted by	56.8	Specific Q (l/s/ha)	1.1							
data transfer (m³/s)										
Q ₁₀₀ growth curve factor	3.13	Q100/ area (l/s/ha)	3.3							
Q ₁₀₀ (m ³ /s)	177.8		0.0							
	Summa	ry Data								
FEH catchment area	53	2.15	km ²							
Adjusted catchment area	53	533.77 km ²								
URBEXT 1990	0.	002								
URBEXT 2010	0.	002								
URBEXT Adjustment		v+0000								
Method	. One:	x12000								
SAAR	8	26								
Method Used	FEH Statis	tical Method								
Variation from Chosen	The Ellon AMAX gauge record has	been extended via regression with the								
Method	correspond to t	his merged record.								
Index Used	BFI	HOST								
QMED	56	5.82	m ³ /s							
5	79	0.66	m ³ /s							
10	97	7.35	m ³ /s							
20	13	0.42	m ³ /a							
30	14	0.72	III ⁻ /S							
50	14		m°/s							
75	10;	7.14	m°/s							
100	17	/./6	m³/s							
200	21:	2.22	m³/s							
1000	32	0.25	m³/s							
Climate Change Region	Eastern	Scotland								
Climate change	24	.0%								
adjustment	L7									
200 + cc	26	63.1	m ³ /s							
Donor/ Analogues Used										
Calcs by:	Briony McIntosh	Date:	20/03/2018							
Checked by:	David Cameron	Date:	21/03/2018							

		POOLING GR	OUP DETAILS										
Ovining Default Dealing Crown							Default Dealing Crown Catalyment Deagri						
Station	Distance	Veero of date	OMED AM	LCV		Discordonov	Station	Diotonoo SDM	AREA	SAAD	EDEVT	EADI	LIPPEYT 2000
10003 (Ythan @ Ellon)	0.000	78	56.819	0.240	0.259	0 184	10003 (Ythan @ Ellon)	Distance 3DM	532 290	826 000	0.047	0.993	0.002
22001 (Coquet @ Morwick)	0.000	53	152 176	0.240	0.233	0.309	22001 (Coquet @ Morwick)	0.000	578 250	850.000	0.040	0.000	0.002
10001 (Ythan @ Ardlethen)	0.217	46	50 180	0.179	0.116	1 496	10001 (Ythan @ Ardlethen)	0.217	457 120	830.000	0.043	0.992	0.001
43008 (Wylve @ South Newton)	0.269	45	12 620	0.256	0.154	0.759	43008 (Wylve @ South Newton)	0.269	448 170	830.000	0.052	0.002	0.010
11003 (Don @ Bridge of Alford)	0.330	44	101 115	0.225	0.273	0.309	11003 (Don @ Bridge of Alford)	0.330	509 940	967.000	0.036	0.996	0.000
21031 (Till @ Etal)	0.334	28	82 895	0.223	0.282	0.285	21031 (Till @ Etal)	0.334	634 680	827 000	0.067	0.992	0.002
21806 (Till @ Heaton Mill)	0.368	14	133 121	0.343	0.297	1.625	21806 (Till @ Heaton Mill)	0.368	655 540	822 000	0.067	0.992	0.002
24001 (Wear @ Sunderland Bridge)	0.416	59	186 152	0.191	0.231	1 720	24001 (Wear @ Sunderland Bridge)	0.416	661 170	932 000	0.035	0.002	0.019
9001 (Deveron @ Avochie)	0.448	58	129,725	0.243	0.187	0.633	9001 (Deveron @ Avochie)	0.448	444.910	988.000	0.034	0.998	0.002
39034 (Evenlode @ Cassington Mill)	0.546	45	20.900	0.164	0.286	2.207	39034 (Evenlode @ Cassington Mill)	0.546	427,140	691.000	0.068	0.965	0.014
24008 (Wear @ Witton Park)	0.568	42	212.945	0.163	0.070	1.473	24008 (Wear @ Witton Park)	0.568	454.630	1035.000	0.024	0.970	0.004
Libbo (Hour @ Hillon Full)	0.000		212.010	0.100	0.070		2 lood (from @ fritten runt)	0.000	10 11000	1000.000	0.021	0.070	0.001
Total		512											
Weighted means				0.238	0.232								
				0.000									
Final Pooling Group							Final Pooling Group						
Station	Distance	Years of data	OMED AM	L-CV	L-SKEW	Discordancy	Station	Distance SDM	AREA	SAAR	FPFXT	FARI	LIBBEXT 2000
10003 (Ythan @ Ellon)	0.000	78	56.819	0.240	0.259	0.237	10003 (Ythan @ Ellon)	0.000	532,290	826.000	0.047	0.993	0.002
22001 (Coquet @ Morwick)	0 148	53	152 176	0.270	0.277	0.255	22001 (Coquet @ Morwick)	0 148	578 250	850.000	0.040	0.993	0.002
11003 (Don @ Bridge of Alford)	0.330	44	101.115	0.225	0.273	0.150	11003 (Don @ Bridge of Alford)	0.330	509.940	967.000	0.036	0.996	0.000
21031 (Till @ Etal)	0.334	28	82,895	0.273	0.282	0.309	21031 (Till @ Etal)	0.334	634,680	827.000	0.067	0.992	0.002
21806 (Till @ Heaton Mill)	0.368	14	133 121	0.343	0.202	2 036	21806 (Till @ Heaton Mill)	0.368	655 540	822 000	0.067	0.992	0.002
24001 (Wear @ Sunderland Bridge)	0.416	59	186 152	0.010	0.231	1 256	24001 (Wear @ Sunderland Bridge)	0.416	661 170	932 000	0.035	0.002	0.019
9001 (Deveron @ Avochie)	0 448	58	129 725	0.243	0.187	0.698	9001 (Deveron @ Avochie)	0.448	444 910	988.000	0.034	0.998	0.002
39034 (Evenlode @ Cassington Mill)	0.546	45	20,900	0.164	0.286	2 483	39034 (Evenlode @ Cassington Mill)	0.546	427 140	691 000	0.068	0.965	0.014
24008 (Wear @ Witton Park)	0.568	42	212 945	0.163	0.070	1 253	24008 (Wear @ Witton Park)	0.568	454 630	1035 000	0.024	0.000	0.004
11002 (Don @ Haughton)	0.593	46	111.687	0.237	0.320	0.559	11002 (Don @ Haughton)	0.593	792,670	916.000	0.051	0.997	0.002
27090 (Swale @ Catterick Bridge)	0.603	23	313 732	0.163	0.020	2 377	27090 (Swale @ Catterick Bridge)	0.603	497 560	1123 000	0.038	0.998	0.002
8004 (Avon @ Delnashaugh)	0.611	62	210 551	0.194	0.208	0.388	8004 (Avon @ Delnashaugh)	0.611	540 750	1108 000	0.026	0.0989	0.000
Soo i (ritori @ Sonitashaugir)	0.011	02	270.001	5.154	0.200	5.000	ooo r (ritori & Dolitashaugh)	0.011	0.70.700		0.520	5.505	0.000
Total		552											
Weighted means		332		0 220	0.241								
Weighted means				0.200	0.241								

DERIVING A POOLED GROWTH CURVE												
Site	Ellon gauging s	tation				Ungauged site						
NGR	NJ946303	√ Gauged site										
			Attached Printo	uts								
	WINFAP-FEH s	tation details										
	WINFAP-FEH s	summary infor	mation if gauged site									
			nitial Pooling Group	o Details								
Vame ess_sepa_EllonGS_default												
Site of interest Gauging Station												
Return perio	d of interest	2, 5, 10, 25,	30, 75, 100, 200, 500	, 1000 years								
Other inform	nation	Till@Etal and	d Till@Eden do not ha	ve overlapping re	ecords.							
Version of V	VIN-FAP FEH	Version 3.0										
Data Files		Other										
lf 'Other' cho	sen in Data											
Files enter f	ile path here	HiFlows v6.0	with SEPA stations u	updated through	WY2016							
	Δ	diustment/ (hanges made to De	fault Pooling G	roup							
	Also note site	s that were in	vestigated but retaine	d in the aroun (i	e for discordanc	V)						
			nooligatoa bat rotaino	Addition/		57						
				Deletion/								
Statio	n number		Name	<u>D</u> eretion/	Rea	ison						
				Invoctigato								
1	0002	Vtho	n@Ardlothon	Investigate	Flow a transformed	ta Ellan						
	10003		Aluellen SouthNouton	D								
4	1000	<u>vvyiye</u>		D		, est la						
	7002			A	increase record ler	igiri						
	27090	Swale@	Delesshourth	A	increase record ler	igiri						
	0004	Avone	Demasnaugn	A	increase record ier	igiri						
			Final Pooling Group	Details								
	114	1	Heterogeneity Me	asure								
	H1			Heterogeneous								
	H2		Accer	otably Homogene	eous							
			Goodness of F	it								
Acce	ptable Fit			Distribution								
	N		Ge	eneralised Logisti								
			Gener	alised Extreme	Value							
Pearson Type iii												
Generalised Pareto												
			Growth Curve Fit	tings								
Attache	Attached print outs											
Allache			WINFAP-FEH growth	n curve								
Name of Fi	nal Pooling Gr	oup		ess_sepa_Ell	onGS_adj							

A.3 Broomies, Modley, Fortree and Hillhead Burns

A.3.1 Broomies Burn

F	EH STATISTICAL FLOOD ES	TIMATION SUMMARY SHEE	T								
Site	Broomies Burn										
NGR	NJ 97145 30445										
Type of	Peak flows for model	ak flows for model 100, 200, 200cc, 500, 1000									
problem/objective of	30, 100, 200, 200cc, 500,	100, 200, 200cc, 500, 1000									
Type of catchment	Rural										
QMED site of	1.5	m ³ /s									
510 00											
	Donor/ Analogue	Sites Considered	·								
Site name	Ythan@Ardlethen										
Station number	10001										
NGR	N 192/309										
Provimity (km)	16 17	0.00									
Adjustment	1 011	0.00									
Site Chosen	Y	0.00									
OMFD adjusted by											
data transfor $(m^3/2)$	1.5	Specific Q (l/s/ha)	2.5								
	0.04		_								
	2.94	Q100/ area (l/s/ha)	7.2								
Q ₁₀₀ (m³/s)	4.4										
	Summa	ry Data									
FEH catchment area	5	./8	km²								
Adjusted catchment area	6	.13	km ²								
URBEXT 1990	0.	002									
URBEXT 2010	0.	001									
URBEXT Adjustment	Urbe	xt2000									
Method		770									
SAAR	/ EEU Statio	70									
Method Used											
Variation from Chosen Method											
Index Used	В	SFI									
QMED	1.	.50	m³/s								
5	2.	.09	m ³ /s								
10	2.	.53	m³/s								
30	3.	.34	m ³ /s								
50	3.	.79	m ³ /s								
100	4.	.50	m ³ /s								
200	5.	.34	m ³ /s								
500	6	.71	m ³ /s								
1000	7	98	m^{3}/c								
Climate Change Begion	Fastern	Scotland	111 / S								
Climate change	Laston	oootiana									
adjustment	24	.0%									
200 + cc	F	5.6	m ³ /s								
Donor/ Analogues Used		· -	iii / J								
Calcs by:	Grace Thompson	Date:	16/02/2018								
Checked by:	David Cameron	Date:	21/03/2018								

		POOLING GR	OUP DETAILS										
Original Default Pooling Group	Distance	Manual of data		1.01/		Discoulance	Default Pooling Group Catchment Descri	ptors	ADEA	0440	TOEVT	FADL	
Station name	Distance	Years of data	QMED AM	L-UV	L-SKEW	Discordancy	Station	Distance SDM	AREA	SAAR	FPEXT	FARL	URBEXT 2000
27031 (Chiliple @ Buill Bildge)	1.013	44	4.34	0.22	0.10	0.20	27051 (Chiliple @ Burn Bridge)	1.01	0.17	000	0.013	1.000	0.006
45816 (Haddeo @ Upton)	1.26	23	3.46	0.31	0.42	0.64	45816 (Haddeo @ Upton)	1.26	0.01	1210	0.011	1.000	0.005
28033 (Dove @ Hollinsciougn)	1.484	37	4.20	0.24	0.42	0.64	28033 (Dove @ Hollinsclough)	1.48	7.92	1346	0.007	1.000	0.000
26802 (Gypsey Race @ Kirby Grindalythe)	1.564	17	0.12	0.27	0.24	0.14	26802 (Gypsey Race @ Kirby Grindalythe)	1.56	15.85	/5/	0.030	1.000	0.000
25019 (Leven @ Easby)	1.567	38	5.33	0.34	0.39	1.10	25019 (Leven @ Easby)	1.57	15.09	830	0.020	1.000	0.004
27073 (Brompton Beck @ Snainton Ings)	1.706	35	0.82	0.20	0.05	0.58	27073 (Brompton Beck @ Snainton Ings)	1./1	8.06	/21	0.237	1.000	0.008
49005 (Bollingey Stream @ Bolingey Cocks	1.722	6	6.51	0.27	0.06	2.39	49005 (Bollingey Stream @ Bolingey Cocl	1.72	16.08	1044	0.023	0.991	0.006
49006 (Camel @ Camelford)	1.815	10	11.35	0.12	-0.27	3.23	49006 (Camel @ Camelford)	1.82	12.52	1418	0.013	1.000	0.003
47022 (Tory Brook @ Newnham Park)	1.847	23	7.12	0.26	0.12	0.45	47022 (Tory Brook @ Newnham Park)	1.85	13.43	1403	0.023	0.942	0.014
25011 (Langdon Beck @ Langdon)	1.873	28	15.88	0.24	0.32	0.91	25011 (Langdon Beck @ Langdon)	1.87	12.79	1463	0.012	1.000	0.001
76011 (Coal Burn @ Coalburn)	1.903	39	1.84	0.16	0.32	0.99	76011 (Coal Burn @ Coalburn)	1.90	1.63	1096	0.074	1.000	0.000
27010 (Hodge Beck @ Bransdale Weir)	1.944	41	9.42	0.22	0.29	0.15	27010 (Hodge Beck @ Bransdale Weir)	1.94	18.82	987	0.009	1.000	0.001
203046 (Rathmore Burn @ Rathmore Bridg	1.997	34	10.79	0.15	0.14	0.60	203046 (Rathmore Burn @ Rathmore Brid	2.00	22.50	1043	0.072	1.000	0.000
44008 (South Winterbourne @ Winterbourne	2.011	37	0.45	0.42	0.33	2.51	44008 (South Winterbourne @ Winterbour	2.01	20.18	1012	0.015	1.000	0.004
25003 (Trout Beck @ Moor House)	2.052	43	15.16	0.17	0.29	0.68	25003 (Trout Beck @ Moor House)	2.05	11.40	1905	0.041	1.000	0.000
71003 (Croasdale Beck @ Croasdale Flum)	2.087	37	10.90	0.21	0.32	0.34	71003 (Croasdale Beck @ Croasdale Flu	2.09	10.71	1882	0.016	1.000	0.000
206006 (Annalong @ Recorder)	2.129	48	15.33	0.19	0.05	1.46	206006 (Annalong @ Recorder)	2.13	14.44	1704	0.023	0.981	0.000
, , ,							, , , , , , , , , , , , , , , , , , ,						
Total		540											
Weighted means				0.236	0.233								
							Final Pooling Group Catchment Descripto	ors					
Station name	Distance	Years of data	QMED AM	L-CV	L-SKEW	Discordancy	Station	Distance SDM	AREA	SAAR	FPEXT	FARL	UBBEXT 2000
27051 (Crimple @ Burn Bridge)	1.013	44	4 54	0.22	0.16	0.42	27051 (Crimple @ Burn Bridge)	1.01	8 17	855	0.01	1.00	0.006
45816 (Haddeo @ Upton)	1.26	23	3.46	0.31	0.42	0.88	45816 (Haddeo @ Upton)	1.26	6.81	1210	0.01	1.00	0.005
28033 (Dove @ Hollinsclough)	1 484	37	4.20	0.24	0.42	0.93	28033 (Dove @ Hollinsclough)	1.48	7.92	1346	0.01	1.00	0.000
25019 (Leven @ Eachy)	1.567	38	5.33	0.34	0.39	2 15	25019 (Leven @ Eashv)	1.10	15.09	830	0.02	1.00	0.000
25011 (Langdon Beck @Langdon)	1.873	28	15.88	0.24	0.32	1.53	25011 (Langdon Beck @ Langdon)	1.87	12 79	1463	0.01	1.00	0.001
76011 (Casl Rure @ Caslbure)	1.000	20	1.04	0.16	0.02	1.50	Z6011 (Casl Burn @ Caslburn)	1.00	1.00	1006	0.07	1.00	0.000
27010 (Ledge Beek @ Brenedele Weir)	1.903	39	0.40	0.10	0.32	0.00	76011 (Coal Bulli @ Coalbulli)	1.90	10.00	1090	0.07	1.00	0.000
27010 (Houge Beck @ Bialisdale Well)	1.944	41	9.42	0.22	0.29	0.09	27010 (Houge Beck @ Brailsdale Well)	1.94	10.02	907	0.01	1.00	0.001
203046 (Ratinffore Burn @ Ratinffore Bridg	1.997	34	10.79	0.15	0.14	0.65	203046 (Ratinmore Burn @ Ratinmore Brid	2.00	22.50	1043	0.07	1.00	0.000
71003 (Croasdale Beck @ Croasdale Flum)	2.087	37	10.90	0.21	0.32	0.33	7 1003 (Croasdale Beck @ Croasdale Flu	2.09	10.71	1882	0.02	1.00	0.000
22003 (Usway Burn @ Shillmoor)	2.173	13	16.17	0.28	0.31	1.44	22003 (Usway Burn @ Shillmoor)	2.17	21.88	1056	0.01	1.00	0.000
49003 (de Lank @ de Lank)	2.353	50	13.99	0.23	0.22	0.08	49003 (de Lank @ de Lank)	2.35	21.61	1628	0.06	1.00	0.000
27032 (Hebden Beck @ Hebden)	2.361	50	3.92	0.21	0.25	0.57	27032 (Hebden Beck @ Hebden)	2.36	22.25	1433	0.02	1.00	0.000
41020 (Bevern Stream @ Clappers Bridge)	2.556	47	13.90	0.21	0.17	1.42	41020 (Bevern Stream @ Clappers Bridge	2.56	35.48	886	0.08	0.99	0.013
28058 (Henmore Brook @ Ashbourne)	2.755	12	9.01	0.16	-0.06	2.35	28058 (Henmore Brook @ Ashbourne)	2.76	38.52	895	0.03	0.98	0.021
24006 (Rookhope Burn @ Eastgate)	2.802	20	24.62	0.15	0.12	0.65	24006 (Rookhope Burn @ Eastgate)	2.80	36.60	1126	0.02	0.99	0.000
Total		513											
Weighted means				0.224	0.258								

			DERIVING A POOLED GROWTH C	URVE	-						
Site	Broomies Burn	@Ythan				Ungauged site					
NGR	NJ 97145 30445	5									
			Attached Printouts								
	WINFAP-FEH s	tation details									
	WINFAP-FEH s	ummary infor	nation if gauged site								
			Initial Pooling Group Deta	ils							
Name		Broomies Bu	rn								
Site of inter	est	Broomies Bu	rn @ Ythan								
Return perio	od of interest	200 years									
Other inforn	nation										
Version of V	WIN-FAP FEH	Version 3.0									
Data Files		Other									
lf 'Other' cho	osen in Data										
Files enter	file path here										
		Adjustme	ent/ Changes made to Default	Pooling Group							
	Also not	e sites that w	ere investigated but retained in th	ne group (i.e. for	discordancy)						
				Addition/							
Statio	on number		Name	Deletion/	Re	ason					
				Move/							
2	06006	ŀ	Annalong@Recorder	D	Theoretical d	ischarge values					
2	26802	Gypsy	Race @ Kirby Grindalythe	D	BFI	0.959					
4	19006	,,,,,	Camel@Camelford	D	Outlier or	ו Lmoments					
	19005	Boilingey St	eam @ Boilingey Cocks Bridge	D	5 years	data only					
	17022	Tory	Brook @Newham Park	D	FAR	L 0.942					
2	27073	Brompt	on Beck @ Snainton ings	D	BFI	0.887					
4	14008	South Winter	bourn@ Winterbourn Steepleton	D	BFI	0.811					
2	25003	Tro	ut Beck@Moor House	D	SAA	R 1905					
2	27032	He	bden Beck @ Hebden	А	Increase r	ecord length					
4	49003		de Lank@ de Lank	А	Increase r	ecord length					
4	41020	Bevern	Stream @ Clappers Bridge	A	Increase r	ecord length					
2	28058	Henr	nore Brook @Ashborne	A	Increase r	ecord length					
2	24006	Rool	hope Burn @ Eastgate	А	Increase r	ecord length					
2	22003	Us	way Burn @ Shilmoor	А	Increase r	ecord length					
			Final Pooling Group Deta	ils							
			Heterogeneity Measure								
	H1		Heter	ogeneous							
	H2		Acceptably	Homogeneous							
			Goodness of Fit								
Acce	ptable Fit		Dist	ribution							
	√ Generalised Logistic										
	√ Generalised Extreme Value										
			Pears	on Type iii							
			General	ised Pareto							
			Growth Curve Fittings								
Attach	Attached print outs WINFAP-FEH growth curve fittings										
Allache			WINFAP-FEH growth curve								
Name of F	inal Pooling Gr	oup	Pc	oling-group-9992	200						

6.1.1 Modley Burn

F	EH STATISTICAL FLOOD ES	TIMATION SUMMARY SHE	ET								
Site	Modley Burn@Ythan										
NGR	NJ95084 30292	95084 30292									
Type of	Peak flows for model										
problem/objective of	30, 100, 200, 200cc, 500,	1000									
Type of catchment	Rural	î 2 ,									
QMED _{site cd}	0.9	m°/s									
	Deper/ Apologue	Sites Canaidarad									
Site name	Ythan@Ardlethen	Siles Considered									
	10001										
Station number	10001 N10224200										
NGR Brovimity (km)	14 02	0.00									
Adjustment	1 011	0.00									
Site Chosen	Y	0.00									
QMED site adjusted by											
data transfer (m ³ /s)	0.9	Specific Q (l/s/ha)	2.5								
Q ₁₀₀ growth curve factor	2.92										
$O_{\rm res}(m^{3}/s)$	2.7	Q100/ area (l/s/ha)	7.3								
	Summa	rv Data									
FFH catchment area	3	.75	km ²								
Adjusted catchment area	3.62 km ²										
URBEXT 1990	0.020 KIII										
URBEXT 2010	0.	028									
URBEXT Adjustment	Lirbo	vt2000									
Method	UDE	X12000									
SAAR	7	769									
Method Used	FEH Statis	tical Method									
Variation from Chosen											
Method											
Index Used	В	iFI	2.								
QMED	0.	.91	m³/s								
5	1.	.24	m³/s								
10	1.	.50	m³/s								
30	1.	.98	m³/s								
50	2.	.25	m³/s								
100	2.	.67	m ³ /s								
200	3.	.18	m ³ /s								
500	4.	.00	m ³ /s								
1000	4.77 m ³ /s										
Climate Change Region	Eastern Scotland										
Climate change	24	.0%									
		2.0	m ³ /o								
200 + CC	3		/II ⁻ /S								
Donoi/ Analogues Used											
Calcs by:	Grace Thompson	Date:	28/02/2018								
Checked by:	David Cameron	Date:	21/03/2018								

		POOLING G	ROUP DETAILS										
Original Default Pooling Group	Diotopor	Veere of date			L SKEW	Discordonov	Default Pooling Group Catchment Descri	ptors	ADEA	SAAD	EDEVT	EADI	LIPPEYT 2000
Station name	1 41	20	1 QIMED AIM	0.16	0.22	1 10	76011 (Cool Burn @ Coolburn)	Distance 3DM	1.62	1006		1.00	0000
27051 (Coal Burn @ Coalburn)	1.41	39	1.0	0.10	0.32	0.19	27051 (Crimple @ Burn Bridge)	1.41	0.17	1096	0.07	1.00	0.000
27051 (Crimple @ Burn Bridge)	1.50	44	4.5	0.22	0.10	1.00	27051 (Grimple @ Burn Bridge)	1.00	6.17	000	0.01	1.00	0.006
45816 (Haddeo @ Opton)	1.04	23	3.5	0.31	0.42	0.50	45616 (Haddeo @ Opton)	1.04	0.01	701	0.01	1.00	0.005
27073 (Brompton Beck @ Snamon ings)	1.//	35	0.8	0.20	0.05	0.52	27073 (Brompton Beck @ Snainton ings)	1.//	0.00	121	0.24	1.00	0.008
28033 (Dove @ Hollinsciougn)	1.90	37	4.2	0.24	0.42	0.58	28033 (Dove @ Hollinsclough)	1.90	7.92	1346	0.01	1.00	0.000
25019 (Leven @ Easby)	2.21	30	5.3	0.34	0.39	2.00	25019 (Leven @ Easby)	2.21	15.09	830	0.02	1.00	0.004
26602 (Gypsey Race @ Kirby Grindalytre)	2.21	17	0.1	0.27	0.24	0.38	26602 (Gypsey Race @ Kirby Grindalytre)	2.21	15.65	/5/	0.03	1.00	0.000
49006 (Camel @ Camelford)	2.33	10	11.4	0.12	-0.27	3.03	49006 (Camel @ Camelford)	2.33	12.52	1418	0.01	1.00	0.003
49005 (Bollingey Stream @ Bolingey Cocks	2.34	6	6.5	0.27	0.06	2.33	49005 (Bollingey Stream @ Bolingey Coc	2.34	16.08	1044	0.02	0.99	0.006
4/022 (Tory Brook @ Newnham Park)	2.37	23	7.1	0.26	0.12	0.60	47022 (Tory Brook @ Newnham Park)	2.37	13.43	1403	0.02	0.94	0.014
25011 (Langdon Beck @ Langdon)	2.38	28	15.9	0.24	0.32	0.84	25011 (Langdon Beck @ Langdon)	2.38	12.79	1463	0.01	1.00	0.001
25003 (Trout Beck @ Moor House)	2.46	43	15.2	0.17	0.29	0.82	25003 (Trout Beck @ Moor House)	2.46	11.4	1905	0.04	1.00	0.000
71003 (Croasdale Beck @ Croasdale Flum	2.49	37	10.9	0.21	0.32	0.30	71003 (Croasdale Beck @ Croasdale Flu	2.49	10.71	1882	0.02	1.00	0.000
27010 (Hodge Beck @ Bransdale Weir)	2.57	41	9.4	0.22	0.29	0.13	27010 (Hodge Beck @ Bransdale Weir)	2.57	18.82	987	0.01	1.00	0.001
203046 (Rathmore Burn @ Rathmore Bridg	2.61	34	10.8	0.15	0.14	0.80	203046 (Rathmore Burn @ Rathmore Brid	2.61	22.5	1043	0.07	1.00	0.000
206006 (Annalong @ Recorder)	2.62	48	15.3	0.19	0.05	1.41	206006 (Annalong @ Recorder)	2.62	14.44	1704	0.02	0.98	0.000
Total		503											
Weighted means				0.223	0.226								
							Final Pooling Group Catchment Descript	ors					
Station name	Distance	Years of data	QMED AM	L-CV	L-SKEW	Discordancy	Station	Distance SDM	AREA	SAAR	FPEXT	FARL	URBEXT 2000
76011 (Coal Burn @ Coalburn)	1.41	39	1.84	0.164	0.316	1.51	76011 (Coal Burn @ Coalburn)	1.41	1.63	1096	0.07	1.00	0.000
27051 (Crimple @ Burn Bridge)	1.56	44	4.54	0.223	0.156	0.42	27051 (Crimple @ Burn Bridge)	1.56	8.17	855	0.01	1.00	0.006
45816 (Haddeo @ Upton)	1.64	23	3.46	0.307	0.418	0.88	45816 (Haddeo @ Upton)	1.64	6.81	1210	0.01	1.00	0.005
28033 (Dove @ Hollinsclough)	1.90	37	4.20	0.237	0.418	0.93	28033 (Dove @ Hollinsclough)	1.90	7.92	1346	0.01	1.00	0.000
25019 (Leven @ Easby)	2.21	38	5.33	0.338	0.391	2.15	25019 (Leven @ Easby)	2.21	15.09	830	0.02	1.00	0.004
25011 (Langdon Beck @ Langdon)	2.38	28	15.88	0.238	0.318	1.53	25011 (Langdon Beck @ Langdon)	2.38	12.79	1463	0.01	1.00	0.001
71003 (Croasdale Beck @ Croasdale Flum	2.49	37	10.90	0.212	0.323	0.33	71003 (Croasdale Beck @ Croasdale Flu	2.49	10.71	1882	0.02	1.00	0.000
27010 (Hodge Beck @ Bransdale Weir)	2.57	41	9.42	0.224	0.293	0.09	27010 (Hodge Beck @ Bransdale Weir)	2.57	18.82	987	0.01	1.00	0.001
203046 (Bathmore Burn @ Bathmore Bridg	2.61	34	10.79	0.146	0.136	0.65	203046 (Bathmore Burn @ Bathmore Brid	2.61	22.5	1043	0.07	1.00	0.000
22003 (Usway Burn @ Shillmoor)	2.80	13	16.17	0.282	0.311	1.44	22003 (Usway Burn @ Shillmoor)	2.80	21.88	1056	0.01	1.00	0.000
49003 (de Lank @ de Lank)	2.80	50	13.00	0.225	0.217	0.08	19003 (de Lank @ de Lank)	2.80	21.61	1628	0.06	1.00	0.000
27032 (Hebden Beck @ Hebden)	2.03	50	3.92	0.225	0.253	0.57	27032 (Hebden Beck @ Hebden)	2.03	22.25	1433	0.00	1.00	0.000
41020 (Bevern Stream @ Clanners Bridge)	3.18	47	13.00	0.205	0.17	1.42	41020 (Bevern Stream @ Clappers Bridge	3.18	35.48	886	0.08	0.00	0.013
28058 (Henmore Brook @ Ashbourso)	3.40	12	9.01	0.155	-0.064	2.35	28058 (Henmore Brook @ Achbourse)	3.40	38.52	895	0.03	0.98	0.021
24006 (Reakbana Rum @ Fastrata)	9.49	20	24.62	0.153	0.117	0.65	24006 (Reakbase Burs @ Eastrate)	9.49	26.6	1106	0.00	0.00	0.021
24000 (nookilope bulli @ Easigale)	3.43	20	24.02	0.152	0.117	0.03	24000 (nookilope Bulli @ Easigale)	3.43	30.0	1120	0.02	0.39	0.000
Total		513											
Weighted means				0.223	0.258								

	DEF	RIVING A POOLED GROU	WTH CURVE								
Site Modley Burn					Ungauged site						
NGR NJ 95084 3029	2				Gauged site						
		Attached Printo	uts								
WINFAP-FEH	station details										
WINFAP-FEH	summary infor	mation if gauged site									
		nitial Pooling Group	Details								
Name	Modley Burn										
Site of interest	Site of Interest Modley Burn @ Ythan										
leturn period of interest 200 years											
Other information											
Version of WIN-FAP FEH	Version 3.0										
Data Files	Other										
lf 'Other' chosen in Data											
Files enter file path here											
	Adjustment/ C	Changes made to De	fault Pooling G	roup.							
Also note sit	es that were ir	nvestigated but retained	d in the group (i.	e. for discordanc	y)						
			Deletion/								
Station number		Name		Rea	son						
			Investigate								
206006	Annal	ong@Recorder	D	Theoriecal dis	charge values						
268 02	Gypsey Race	e @Kirkby Grindalythe	D	BFI ().959						
49006	Cam	el@Camelford	D	Outlier on	Lmoments						
49005	ingey stream	@Boilingey cocks Bri	D	5 years o	data only						
47022	rook@Newha	m Park	D	FARL	0.942						
27073	Brompton B	eck@ Snainton ings	D	BFI ().887						
44008	uth winterbou	rn@ Winterbourn Stee	D	BFI).811						
25003	Irout Bee	ck @ Moor House	D	SAAF	1905						
27032	Hebden	Beck @Hebden	<u>A</u>	Increase re	cord legnth						
49003	De L	ank@De lank	A	Increase re	cord legnth						
41020	Bevern Strea	am @Clappers Bridge	<u>A</u>	Increase re	cord legnth						
28058	Henimore		<u>A</u>	Increase re							
24006		e bum@Eastyate Bum@Shilmoor	A		cord legnth						
22003	USWay	Einal Pooling Group	Details	increase re	colu legntil						
		Heterogeneity Me									
H1		notorogonoty mot	Heterogeneous								
H2		Accer	tably Homogene	2005							
		Goodness of F	it								
Acceptable Fit			Distribution								
	Generalised Logistic										
	Generalised Extreme Value										
		F	Pearson Type iii								
		Ge	eneralised Pareto)							
		Growth Curve Fitt	tings								
Attached print auto		WINFAP-FEH growth	curve fittings								
Attached print outs		WINFAP-FEH growth	curve								
Name of Final Pooling G	roup		Modley Burn	_Default							

A.3.2 Fortree Burn

F	EH STATISTICAL FLOOD ES	TIMATION SUMMARY SHE	ET					
Site	Fortree Burn							
NGR	NJ94845 29353							
Type of	Peak flows for model							
problem/objective of	30, 100, 200, 200cc, 500,	1000						
-	Dural							
Type of catchment	Rurai	3,						
QMED site cd	0.5	m°/s						
	Donor/ Analogue	Sites Considered						
Site name	Ythan@Ardlethen							
Station number	10001							
NGR	NJ924309							
Proximity (km)	16.88	0.00						
Adjustment	1.011	0.00						
Site Chosen	Y							
QMED site adjusted by	0.5	Spacific O (1/o/ba)	0.6					
data transfer (m ³ /s)	0.5	Specific Q (I/S/fia)	2.0					
Q ₁₀₀ growth curve factor	2.92							
Q_{400} (m ³ /s)	1.6	Q100/ area (l/s/ha)	7.6					
	Summa	rv Data						
EEH ootobmont area	2	15	km ²					
	2.15 km ²							
Adjusted catchment area		.07	KIII-					
	0.	057						
URDEAT 2010	0.	001						
Mothod	Urbe	xt2000						
	7	/52						
Method Used	FEH Statis	tical Method						
Variation from Chosen								
Method Index Lload								
	0	54						
	0	.54	m ^o /S					
5	0	.73	m ^o /s					
10	0	.88	m³/s					
25	1	.11	m ³ /s					
50	1	.32	m³/s					
100	1	.57	m ³ /s					
200	1	.88	m ³ /s					
500	2	.38	m ³ /s					
1000	2.85 m ³ /s							
Climate Change Region	Eastern	Scotland						
Climate change	01	00/						
adjustment	24	.0%						
200 + cc	2	2.3	m ³ /s					
Donor/ Analogues Used								
Oalaa kuu		Deter	00/00/0010					
Calcs by:	Grace Inompson		28/02/2018					
Checked by:	David Cameron	Date:	21/03/2018					

		POOLING G	ROUP DETAILS	3						-		_	
Original Default Pooling Group							Default Pooling Group Catchment Descri	ptors					
Station name	Distance	Years of data	QMED AM	L-CV	L-SKEW	Discordancy	Station	Distance SDM	AREA	SAAR	FPEXT	FARL	URBEXT 2000
76011 (Coal Burn @ Coalburn)	0.81	39	1.84	0.164	0.316	0.878	76011 (Coal Burn @ Coalburn)	0.81	1.63	1096	0.074	1.000	0.000
45816 (Haddeo @ Upton)	2.014	23	3.456	0.307	0.418	1.050	45816 (Haddeo @ Upton)	2.014	6.81	1210	0.011	1.000	0.005
27051 (Crimple @ Burn Bridge)	2.038	44	4.539	0.223	0.156	0.180	27051 (Crimple @ Burn Bridge)	2.038	8.17	855	0.013	1.000	0.006
28033 (Dove @ Hollinsclough)	2.295	37	4.2	0.237	0.418	0.551	28033 (Dove @ Hollinsclough)	2.295	7.92	1346	0.007	1.000	0.000
27073 (Brompton Beck @ Snainton Ings)	2.574	35	0.82	0.2	0.049	0.539	27073 (Brompton Beck @ Snainton Ings)	2.574	8.06	721	0.237	1.000	0.008
25019 (Leven @ Easby)	2.828	38	5.333	0.338	0.391	1.985	25019 (Leven @ Easby)	2.828	15.09	830	0.02	1.000	0.004
49006 (Camel @ Camelford)	2.86	10	11.35	0.12	-0.269	2.893	49006 (Camel @ Camelford)	2.86	12.52	1418	0.013	1.000	0.003
26802 (Gypsey Race @ Kirby Grindalythe)	2.863	17	0.116	0.274	0.240	0.389	26802 (Gypsey Race @ Kirby Grindalythe)	2.863	15.85	757	0.03	1.000	0.000
25011 (Langdon Beck @ Langdon)	2.912	28	15.878	0.238	0.318	0.746	25011 (Langdon Beck @ Langdon)	2.912	12.79	1463	0.012	1.000	0.001
47022 (Tory Brook @ Newnham Park)	2.932	23	7.123	0.262	0.115	0.587	47022 (Tory Brook @ Newnham Park)	2.932	13.43	1403	0.023	0.942	0.014
91802 (Allt Leachdach @ Intake)	2.943	34	6.35	0.153	0.257	1.161	91802 (Allt Leachdach @ Intake)	2.943	6.54	2554	0.003	0.992	0.000
71003 (Croasdale Beck @ Croasdale Flum	2.947	37	10.9	0.212	0.323	0.249	71003 (Croasdale Beck @ Croasdale Flu	2.947	10.71	1882	0.016	1.000	0.000
49005 (Bollingey Stream @ Bolingey Cocks	2.968	6	6.511	0.265	0.063	2.188	49005 (Bollingey Stream @ Bolingey Coc	2.968	16.08	1044	0.023	0.991	0.006
25003 (Trout Beck @ Moor House)	2.977	43	15.164	0.17	0.288	0.648	25003 (Trout Beck @ Moor House)	2.977	11.4	1905	0.041	1.000	0.000
54022 (Severn @ Plynlimon Flume)	3.119	38	14.988	0.156	0.171	0.752	54022 (Severn @ Plynlimon Flume)	3.119	8.75	2481	0.01	1.000	0.000
206006 (Annalong @ Recorder)	3.168	48	15.33	0.189	0.052	1.204	206006 (Annalong @ Recorder)	3.168	14.44	1704	0.023	0.981	0.000
Total		500			_					-	-		
Weighted means				0.218	0.226						-		
											-		
							Final Pooling Group Catchment Descripte	ors					
Station name	Distance	Years of data	QMED AM	L-CV	L-SKEW	Discordancy	Station	Distance SDM	AREA	SAAR	FPEXT	FARL	URBEXT 2000
76011 (Coal Burn @ Coalburn)	0.81	39	1.84	0.164	0.316	1.212	76011 (Coal Burn @ Coalburn)	0.81	1.63	1096	0.074	1.000	0.000
45816 (Haddeo @ Upton)	2.014	23	3.456	0.307	0.418	1.136	45816 (Haddeo @ Upton)	2.014	6.81	1210	0.011	1.000	0.005
27051 (Crimple @ Burn Bridge)	2.038	44	4.539	0.223	0.156	1.135	27051 (Crimple @ Burn Bridge)	2.038	8.17	855	0.013	1.000	0.006
28033 (Dove @ Hollinsclough)	2.295	37	4.2	0.237	0.418	0.933	28033 (Dove @ Hollinsclough)	2.295	7.92	1346	0.007	1.000	0.000
25019 (Leven @ Easby)	2.828	38	5.333	0.338	0.391	1.997	25019 (Leven @ Easby)	2.828	15.09	830	0.02	1.000	0.004
25011 (Langdon Beck @ Langdon)	2 912	28	15.878	0.238	0.318	0.960	25011 (Langdon Beck @ Langdon)	2 9 1 2	12 79	1463	0.012	1 000	0.001
91802 (Allt Leachdach @ Intake)	2 943	34	6.35	0.153	0.257	1.255	91802 (Allt Leachdach @ Intake)	2 943	6.54	2554	0.003	0.992	0.000
71003 (Crossdale Beck @ Crossdale Flum	2 947	37	10.9	0.212	0.323	0.245	71003 (Cross dale Back @ Cross dale Elu	2 9 4 7	10.71	1882	0.016	1 000	0.000
54022 (Severn @ Plynlimon Flume)	3 1 1 9	38	14 988	0.156	0.171	0.858	54022 (Severn @ Plynlimon Flume)	3 1 1 9	8 75	2481	0.010	1.000	0.000
206006 (Annalong @ Becorder)	3 168	48	15.33	0.189	0.052	2.079	206006 (Annalong @ Becorder)	3 168	14 44	1704	0.023	0.981	0.000
22002 (Lloway Rum @ Shillmoor)	2 4 2 4	10	16.17	0.000	0.002	1.000	220002 (Haway Burn @ Shillmoor)	2 4 2 4	01.00	1056	0.006	1.000	0.000
49003 (de Lank @ de Lank)	3.424	50	13 985	0.202	0.217	0.370	49003 (de Lank @ de Lank)	3.424	21.00	1628	0.000	0.000	0.000
27032 (Hebden Back @ Hebden)	3 569	50	3 923	0.223	0.253	0.570	27032 (Hebden Beck @ Hebden)	3 569	22.25	1433	0.004	0.007	0.000
41000 (Reverse Chrosen @ Cleanarse Bridge	0.000	47	10.0	0.207	0.233	0.172	41000 (Review Observe @ Classery Bride)	0.051	05.40	0.00	0.021	0.000	0.000
HI OZO (Deveni Stream @ Ciappers Bridge	0.951	47	13.9	0.205	0.170	0.420	+ 1020 (bevern Stream @ Ciappers Broge	3.301	35.48	000	0.076	0.993	0.013
Total		526	1										
Weighted means				0.222	0.264								
· · · · · · · · · · · · · · · · · · ·													

		DEF	RIVING A POOLED GROV	WTH CURVE		
					1	1.1. 1. 1.
Site	Fortree Burn				ν	Ungauged site
NGR	NJ 94848 29353	3				Gauged site
			Attached Printo	uts		
	WINFAP-FEH S	station details	mention if nounced site			
	WINFAP-FEH S	summary inior	mation if gauged site	Detaile		
Nerree		Leadare Dura	nitial Pooling Group	Detalls		
Name	vaat	Fortree Burn				
Sile of Inter	ad of interact	POILICEBUIII	<u>wrinan</u>			
Other inform	ou of interest	200 years				
		Version 2.0				
Deta Filoa						
Data Files	an an in Data			VS UK Dec 2004	version rooming	
II Other ch	file noth here					
Flies enter	nie pain nere					
		djustment/ C	Changes made to De	fault Pooling G	roup.	
	Also note site	es that were in	ivestigated but retaine	a in the group (i.e	e. Ior discordan	cy)
Static	on number		Name	Deletion/	Re	ason
				<u>M</u> ove/		
	27073	Brompton B	Beck @ Snainton ings	D D	BFI	0.887
	49006	Cam	el@Camleford	D	Outlier on	Lmoments
:	26802	Gypsey Rac	e @Kirkby Grindalythe	D	BFI	0.959
	47022	Tory Broo	k @ Hewham Park	D	FARI	L 0.942
	49005	ilingley Strear	m@Boilingey Cock Brid	D	5 years	data only
	25003	Trout Be	eck@ Moor House	D	SAA	R 1905
	27032	Hebder	n Beck @Hebden	A	Increase r	ecord length
	49003	De La	ank @ De Lank	A	Increase r	ecord length
	22003	Ursway	Burn @Shiimoor	A	Increase r	ecord length
· · · · ·	41020	Bevern Strea	am@Clappers Bridge	A	Increase r	ecord length
			Final Pooling Group	Dotaile		
			Heterogeneity Me			
	H1		The terogeneity we	Heterogeneous		
	H2		Accer	tably Homogene		
			Goodness of F	it	.000	
Acce	ntable Fit			Distribution		
Acce	V		Ge	neralised Logisti	c	
			Gener	alised Extreme V	- /alue	
	,		F	Pearson Type iii		
			Ge	eneralised Pareto)	
		I	Growth Curve Eit	tings	-	
			WINFAP-FFH arowth	curve fittings		
Attach	ed print outs		WINFAP-FEH growth			
Name of F	inal Pooling Gr	oup		Fortree De	efault	

6.1.2 Hillhead Burn

F	EH STATISTICAL FLOOD ES	TIMATION SUMMARY SHEET						
Site	Hillhead Burn	illhead Burn						
NGR	NJ 95729 29846							
Type of	Peak flows for model							
problem/objective of	30, 100, 200, 200cc, 500,	1000						
Type of catchment	Rural	Iral						
QMED _{site cd}	0.2	m³/s						
Cito nomo	Donor/ Analogue	Sites Considered						
	<u>T than@Aluethen</u>							
Station number	10001							
NGR	NJ924309	0.00						
Proximity (Km)	10.88	0.00						
Adjustment	1.011 V	0.00						
Sile Chosen	t t							
OMED adjusted by								
data transfer (m^3/c)	0.2	Specific Q (l/s/ha)	2.8					
	2.05							
Q_{100} grow in curve factor	2.95	Q100/ area (l/s/ha)	8.3					
Q ₁₀₀ (m ⁻ /s)	0.0							
Summery Dete								
EEU ootohmont oroo	2 15 km ²							
	0.71 km ²							
Adjusted catchment area	0.71 Km-							
UBBEXT 2010	0.061							
URBEXT Adjustment								
Method	Urbe	xt2000						
SAAR	7	752						
Method Used	FEH Statis	tical Method						
Variation from Chosen								
Method								
Index Used	В	FI						
QMED	0.	.20	m ³ /s					
5	0.	.29	m³/s					
10	0.	.36	m ³ /s					
25	0.	.45	m³/s					
50	0.	.54	m³/s					
100	0.	.64	m³/s					
200	0.	.76	m³/s					
500	0.	.96	m ³ /s					
1000	1.15 m ³ /s							
Climate Change Region	Eastern	Scotland						
Climate change	24	.0%						
adjustment	27							
200 + cc	С).9	m³/s					
Donor/ Analogues Used								
Calcs by:	Grace Thompson	Date:	28/02/2018					
Checked by:	David Cameron	Date:	21/03/2018					

		POOLING G	ROUP DETAILS									_	
Original Default Pooling Group							Default Pooling Group Catchment Descr	iptors					
Station name	Distance	Years of data	QMED AM	L-CV	L-SKEW	Discordancy	Station	Distance SDM	AREA	SAAR	PPEXT	FARL	URBEXT 2000
76011 (Coal Burn @ Coalburn)	0.81	39	1.84	0.164	0.316	0.878	76011 (Coal Burn @ Coalburn)	0.81	1.63	1096	0.074	1.000	0.000
45816 (Haddeo @ Upton)	2.014	23	3.456	0.307	0.418	1.050	45816 (Haddeo @ Upton)	2.014	6.81	1210	0.011	1.000	0.005
27051 (Crimple @ Burn Bridge)	2.038	44	4.539	0.223	0.156	0.180	27051 (Crimple @ Burn Bridge)	2.038	8.17	855	0.013	1.000	0.006
28033 (Dove @ Hollinsclough)	2.295	37	4.2	0.237	0.418	0.551	28033 (Dove @ Hollinsclough)	2.295	7.92	1346	0.007	1.000	0.000
27073 (Brompton Beck @ Snainton Ings)	2.574	35	0.82	0.2	0.049	0.539	27073 (Brompton Beck @ Snainton Ings)	2.574	8.06	721	0.237	1.000	0.008
25019 (Leven @ Easby)	2.828	38	5.333	0.338	0.391	1.985	25019 (Leven @ Easby)	2.828	15.09	830	0.020	1.000	0.004
49006 (Camel @ Camelford)	2.86	10	11.35	0.12	-0.269	2.893	49006 (Camel @ Camelford)	2.86	12.52	1418	0.013	1.000	0.003
26802 (Gypsey Race @ Kirby Grindalythe)	2.863	17	0.116	0.274	0.240	0.389	26802 (Gypsey Race @ Kirby Grindalythe	2.863	15.85	757	0.030	1.000	0.000
25011 (Langdon Beck @ Langdon)	2.912	28	15.878	0.238	0.318	0.746	25011 (Langdon Beck @ Langdon)	2.912	12.79	1463	0.012	1.000	0.001
47022 (Tory Brook @ Newnham Park)	2.932	23	7.123	0.262	0.115	0.587	47022 (Tory Brook @ Newnham Park)	2.932	13.43	1403	0.023	0.942	0.014
91802 (Allt Leachdach @ Intake)	2.943	34	6.35	0.153	0.257	1.161	91802 (Alt Leachdach @ Intake)	2.943	6.54	2554	0.003	0.992	0.000
71003 (Croasdale Beck @ Croasdale Flum	2.947	37	10.9	0.212	0.323	0.249	71003 (Croasdale Beck @ Croasdale Flu	2.947	10.71	1882	0.016	1.000	0.000
49005 (Bollingey Stream @ Bolingey Cocks	2.968	6	6.511	0.265	0.063	2.188	49005 (Bollingey Stream @ Bolingey Coc	2.968	16.08	1044	0.023	0.991	0.006
25003 (Trout Beck @ Moor House)	2.977	43	15.164	0.17	0.288	0.648	25003 (Trout Beck @ Moor House)	2.977	11.4	1905	0.041	1.000	0.000
54022 (Severn @ Plynlimon Flume)	3.119	38	14.988	0.156	0.171	0.752	54022 (Severn @ Plynlimon Flume)	3.119	8.75	2481	0.010	1.000	0.000
206006 (Annalong @ Recorder)	3.168	48	15.33	0.189	0.052	1.204	206006 (Annalong @ Recorder)	3.168	14.44	1704	0.023	0.981	0.000
Total		500											
Weighted means				0.218	0.226								
							Final Pooling Group Catchment Descript	ors					
Station name	Distance	Years of data	QMED AM	L-CV	L-SKEW	Discordancy	Station	Distance SDM	AREA	SAAR	FPEXT	FARL	URBEXT 2000
76011 (Coal Burn @ Coalburn)	0.821	38	1.84	0.165	0.331	1.28	76011 (Coal Burn @ Coalburn)	0.821	1.63	1096	0.074	1	0
45816 (Haddeo @ Upton)	2.003	22	3.489	0.314	0.415	1.018	45816 (Haddeo @ Upton)	2.003	6.81	1210	0.011	1	0.005
27051 (Crimple @ Burn Bridge)	2.025	43	4.514	0.219	0.154	0.36	27051 (Crimple @ Burn Bridge)	2.025	8.17	855	0.013	1	0.006
28033 (Dove @ Hollinsclough)	2.284	36	4.225	0.24	0.415	0.78	28033 (Dove @ Hollinsclough)	2.284	7.92	1346	0.007	1	0
27073 (Brompton Beck @ Snainton Ings)	2.551	34	0.816	0.198	0.056	1.209	27073 (Brompton Beck @ Snainton Ings)	2.551	8.06	721	0.237	1	0.008
25019 (Leven @ Easby)	2.813	37	4.989	0.342	0.39	1.904	25019 (Leven @ Easby)	2.813	15.09	830	0.02	1	0.004
26802 (Gypsey Race @ Kirby Grindalythe)	2.846	16	0.112	0.274	0.274	0.885	26802 (Gypsey Race @ Kirby Grindalythe	2.846	15.85	757	0.03	1	0
25011 (Langdon Beck @ Langdon)	2 898	28	15.878	0.238	0.318	1.442	25011 (Langdon Beck @ Langdon)	2,898	12.79	1463	0.012	1	0.001
47022 (Tory Brook @ Newnham Park)	2.918	22	7.227	0.262	0.093	1.553	47022 (Tory Brook @ Newnham Park)	2.918	13.43	1403	0.023	0.942	0.014
71003 (Croasdale Beck @ Croasdale Flum	2.936	37	10.9	0.212	0.323	0.275	71003 (Croasdale Beck @ Croasdale Flu	2.936	10.71	1882	0.016	1	0
25003 (Trout Beck @ Moor House)	2 964	42	15 142	0.172	0.293	0.732	25003 (Trout Beck @ Moor House)	2 964	11.4	1905	0.041	1	0
54022 (Severn @ Plynlimon Flume)	3.11	38	14.988	0.156	0.171	1.998	54022 (Severn @ Plynlimon Flume)	3.11	8.75	2481	0.01	1	0
27010 (Hodge Beck @ Bransdale Weir)	3.176	41	9.42	0.224	0.293	0.092	27010 (Hodge Beck @ Bransdale Weir)	3.176	18.82	987	0.009	1	0.001
22003 (Leway Burn @ Shillmoor)	3.408	13	16.17	0.282	0.311	1 205	22003 (Lleway Burn @ Shillmoor)	3 408	21.88	1056	0.006	1	0
49003 (de Lank @ de Lank)	3.552	10	14 324	0.202	0.214	0.117	49003 (de Lank @ de Lank)	3 552	21.00	1629	0.064	0.002	0
24006 (Beekhone Rum @ Eastante)	4.006	20	24.62	0.150	0.117	1.061	24006 (Backbane Purp @ Eastante)	4.006	21.01	11020	0.004	0.004	0
24000 (nookilope bulli @ Easigale)	4.030	20	24.02	0.152	0.117	1.001	24000 (nookilope Burli @ Easigale)	4.050	30.0	1120	0.018	0.994	U
Total		516								-			
Weighted means		0.0	-	0.228	0.261				-	-			
roiginos means				0.220	0.201	1							

		DERIVING A POOLED GROWTH	CURVE			
Site	Hillhead Burn @	∂ Ythan			Ungauged site	
NGR	NJ 95729 2984	6			Gauged site	
		Attached Printouts			- U U	
	WINFAP-FEH	station details				
	WINFAP-FEH s	summary information if gauged site				
		Initial Pooling Group Det	tails			
Name Hillhead Burn@Ythan						
Site of interest Hillhead Burn						
Return period of interest 200 years						
Other info	rmation					
Version o	f WIN-FAP FEH	Version 3.0				
Data Files	3	Other				
lf 'Other' c	hosen in Data					
Files enter file path here						
		Adjustment/ Changes made to Defaul	t Pooling Grou	o.		
	Also note	e sites that were investigated but retained in t	the group (i.e. for	r discordancy)		
			Addition/			
Stat	ion number	Name	Deletion/	Reason		
	49005	Boilngey Stream @Boilingey Cock Beridge	D	Only 5 y	ears of data	
	26006	Annalong@Recorder	D	Thoeretical of	discharge values	
	49006	Camel@Camelford	D	Outlier o	n Lmoments	
	49003	De Lank @ De Lank	A	Increase	record length	
	22003	Usway Burn @Shilmoor	A	Increase	record length	
	24006	Rookhope Burn @Eastgate	A	Increase	record length	
	27010	Hodge Beck @Bransdale	A	Increase	record length	
	91802	Allt Leachdach @ Intake	D	SAA	AR 2554	
		Final Pooling Group Det	ails			
		Heterogeneity Measur	e			

Heterogeneous

Acceptably Homogeneous

Distribution Generalised Logistic

Generalised Extreme Value

Pearson Type iii Generalised Pareto

Hillhead Burn

Goodness of Fit

Growth Curve Fittings WINFAP-FEH growth curve fittings

WINFAP-FEH growth curve

H1

H2

Acceptable Fit

 $\sqrt{}$

 $\sqrt{}$

Attached print outs

Name of Final Pooling Group

B ReFH2 Additional Outputs

B.1 Broomies Burn

UK Design Flood Estimation

Generated on 22 November 2017 15:35:37 by jflownw

Printed from the ReFH Flood Modelling software package, version 2.2.6029.28099 Summary of estimate using the Flood Estimation Handbook revitalised flood

hydrograph method (ReFH)

Site details

Site name: BroomiesBurn Easting: 397200 Northing: 830400 Country: Scotland Catchment Area (km²): 6.13 [5.78]* Using plot scale calculations: No Site description: None

Model run: 200 year

Summary of results

Rainfall - FEH 2013 (mm):	66.66	Total runoff (ML):	87.81
Total Rainfall (mm):	46.48	Total flow (ML):	173.19
		Peak flow (m ³ /s):	3.78
Peak Rainfall (mm):	9.06		

Checksum: 7DB6-FA59

Parameters

Where the user has overriden a system-generated value, this original value is shown in square brackets after the value used.

* Indicates that the user locked the duration/timestep Rainfall parameters (Rainfall - FEH 2013 model)

Name		Value	User-defined?
Duration (hh:mm:ss)		06:30:00	No
Timestep (hh:mm:ss)		00:30:00	No
SCF (Seasonal correction factor)		0.72	No
ARF (Areal reduction factor)	•	0.96	No
Seasonality		Winter	n/a
Loss model parameters			
Name		Value	User-defined?
Cini (mm)	-	111.85	No
Cmax (mm)		438.53	No
Use alpha correction factor		No	No
Alpha correction factor		n/a	No
Routing model parameters			
Name		Value	User-defined?
Tp (hr)	- C	3.74	No
Up		0.65	No
Uk		0.8	No
Baseflow model parameters			
Name		Value	User-defined?
BF0 (m ³ /s)		0.16	No
BL (hr)		34.99	No
BR	F	0.97	No
Urbanisation parameters			
Name		Value	User-defined?
Urban area (km²)		0.01	No
Urbext 2000		0	No
Impervious runoff factor		0.7	No
Imperviousness factor		0.3	No
Tp scaling factor		0.5	No
Sewered area (km²)		0.00	Yes
Sewer capacity (m ³ /s)		0.00	Yes

JBA

B.2 Modley Burn

UK Design Flood Estimation

Generated on 22 November 2017 15:43:13 by jflownw Printed from the ReFH Flood Modelling software package, version 2.2.6029.28099

Summary of estimate using the Flood Estimation Handbook revitalised flood hydrograph method (ReFH)

Checksum: E5EF-400A

Site details Site name: Modleysburns Easting: 394850 Northing: 830400 Country: Scotland Catchment Area (km²): 3.62 [3.75]* Using plot scale calculations: No Site description: None

Model run: 200 year

Summary of results

Rainfall - FEH 2013 (mm):	66.99	Total runoff (ML):	47.09
Total Rainfall (mm):	46.96	Total flow (ML):	92.70
		Peak flow (m ³ /s):	2.06
Peak Rainfall (mm):	9.16		

Parameters

Where the user has overriden a system-generated value, this original value is shown in square brackets after the value used.

* Indicates that the user locked the duration/timestep Rainfall parameters (Rainfall - FEH 2013 model)

Name		Value	User-defined?
Duration (hh:mm:ss)		06:30:00	No
Timestep (hh:mm:ss)		00:30:00	No
SCF (Seasonal correction factor)	•	0.72	No
ARF (Areal reduction factor)		0.97	No
Seasonality		Winter	n/a
Loss model parameters			
Name		Value	User-defined?
Cini (mm)		104.12	No
Cmax (mm)		470.27	No
Use alpha correction factor		No	No
Alpha correction factor		n/a	No
Routing model parameters			
Name		Value	User-defined?
Tp (hr)		3.65	No
Up		0.65	No
Uk		0.8	No
Baseflow model parameters			
Name		Value	User-defined?
BF0 (m ³ /s)		0.08	No
BL (hr)		33.09	No
BR		1.03	No
Urbanisation parameters			
Name		Value	User-defined?
Urban area (km²)		0.15	No
Urbext 2000		0.03	No
Impervious runoff factor		0.7	No
Imperviousness factor		0.3	No
Tp scaling factor		0.5	No
Sewered area (km²)		0.00	Yes
Sewer capacity (m³/s)		0.00	Yes

B.3 Hillhead Burn

UK Design Flood Estimation

Generated on 29 January 2018 12:04:53 by jflownw Printed from the ReFH Flood Modelling software package, version 2.2.6029.28099

Summary of estimate using the Flood Estimation Handbook revitalised flood hydrograph method (ReFH)

Checksum: 2C2A-C56B

User-defined?

Site details Site name: Hillhead Bur Easting: 395050 Northing: 830050 Country: Scotland Catchment Area (km²): 0.71 [2.12]* Using plot scale calculations: No Site description: None

Model run: 200 year

Summary of results

Rainfall - FEH 2013 (mm):	64.14	Total runoff (ML):	8.44
Total Rainfall (mm):	44.64	Total flow (ML):	16.26
		Peak flow (m ³ /s):	0.45
Peak Rainfall (mm):	10.14		

Parameters

Name

Where the user has overriden a system-generated value, this original value is shown in square brackets after the value used.

Value

* Indicates that the user locked the duration/timestep Rainfall parameters (Rainfall - FEH 2013 model)

Duration (hh:mm:ss) 05:30:00 No 00:30:00 Timestep (hh:mm:ss) No E SCF (Seasonal correction factor) 0.71 No ARF (Areal reduction factor) 0.98 No Seasonality Winter n/a Loss model parameters Name Value User-defined? Cini (mm) 100.78 No P 485.45 Cmax (mm) No Use alpha correction factor No No Alpha correction factor n/a No Routing model parameters Value User-defined? Name Tp (hr) 2.91 No 0.65 No Up Uk 0.8 No Baseflow model parameters Name Value User-defined? BF0 (m^3/s) 0.01 No E BL (hr) 28.64 No BR 1.06 No Urbanisation parameters User-defined? Name Value Urban area (km²) 0.06 No 0.05 Urbext 2000 No Impervious runoff factor 0.7 No Imperviousness factor 0.3 No Tp scaling factor 0.5 No Sewered area (km²) 0.00 Yes Sewer capacity (m³/s) 0.00 Yes

B.4 Fortree Burn

UK Design Flood Estimation

Generated on 29 January 2018 11:57:35 by jflownw

 $\label{eq:printed} Printed from the \ {\it ReFH} \ Flood \ {\it Modelling} \ software \ package, \ version \ 2.2.6029.28099$

Summary of estimate using the Flood Estimation Handbook revitalised flood hydrograph method (ReFH)

Checksum: 9422-FA00

Site details Site name: Fortree Burn Easting: 395050 Northing: 830050 Country: Scotland Catchment Area (km²): 2.07 [2.12]* Using plot scale calculations: No Site description: None

Model run: 200 year

Summary of results

Rainfall - FEH 2013 (mm):	64.14	Total runoff (ML):	24.21
Total Rainfall (mm):	44.25	Total flow (ML):	46.61
		Peak flow (m ³ /s):	1.29
Peak Rainfall (mm):	10.06		

Parameters

Where the user has overriden a system-generated value, this original value is shown in square brackets after the value used.

* Indicates that the user locked the duration/timestep Rainfall parameters (Rainfall - FFH 2013 model)

Name		Value	User-defined?
Duration (hh:mm:ss)		05:30:00	No
Timestep (hh:mm:ss)		00:30:00	No
SCF (Seasonal correction factor)		0.71	No
ARF (Areal reduction factor)		0.97	No
Seasonality		Winter	n/a
Loss model parameters			
Name		Value	User-defined?
Cini (mm)	<u> </u>	100.78	No
Cmax (mm)	×	485.45	No
Use alpha correction factor		No	No
Alpha correction factor		n/a	No
Routing model parameters			
Name		Value	User-defined?
Tp (hr)		2.91	No
Up	F	0.65	No
Uk	1. E	0.8	No
Baseflow model parameters			
Name		Value	User-defined?
BF0 (m ³ /s)		0.04	No
BL (hr)		28.64	No
BR		1.06	No
Urbanisation parameters			
Name		Value	User-defined?
Urban area (km²)		0.18	No
Urbext 2000		0.05	No
Impervious runoff factor		0.7	No
Imperviousness factor		0.3	No
Tp scaling factor		0.5	No
Sewered area (km²)		0.00	Yes
Sewer capacity (m³/s)		0.00	Yes

C Ellon AMAX

Below is a table comparing the original AMAX data series for Ellon and the new AMAX series used in this study following the rating review.

	01		•	D1//	
Date	Stage (m)	Original AMAX	Current AMAX	Difference	Comment
		(m³/s)	(m³/s)		
29/01/1984	2.474	57.13	57.13	0.00%	Keep SEPA Q
04/11/1984	3.023	93.63	93.63	0.00%	Keep SEPA Q
01/12/1985	2.870	82.32	82.32	0.00%	Keep SEPA Q
11/04/1987	2.463	56.51	56.51	0.00%	Keep SEPA Q
25/01/1988	2.895	84.10	84.10	0.00%	Keep SEPA Q
20/10/1988	2.685	69.84	69.84	0.00%	Keep SEPA Q
17/12/1989	1.348	14.01	14.01	0.00%	Keep SEPA Q
05/03/1991	2.158	40.98	40.98	0.00%	Keep SEPA Q
04/11/1991	1.967	32.40	32.40	0.00%	Keep SEPA Q
01/10/1992	1.955	31.90	31.90	0.00%	Keep SEPA Q
01/03/1994	2.791	77.69	77.69	0.00%	Keep SEPA Q
12/09/1995	3.011	89.69	97.25	8.43%	JBA Rating
10/02/1996	3.256	103.78	117.61	13.33%	JBA Rating
04/12/1996	1.995	39.86	39.86	0.00%	ORIGINAL SEPA RATING
05/04/1998	2.367	56.40	56.40	0.00%	ORIGINAL SEPA RATING
15/11/1998	2.198	48.63	48.62	0.00%	ORIGINAL SEPA RATING
27/04/2000	2.848	80.74	80.74	0.00%	ORIGINAL SEPA RATING
12/03/2001	2.594	67.49	67.49	0.00%	ORIGINAL SEPA RATING
20/07/2002	2.109	44.70	44.70	0.00%	ORIGINAL SEPA RATING
23/10/2002	3.189	99.85	111.59	11.76%	JBA Rating
19/01/2004	2.038	41.66	41.66	0.00%	ORIGINAL SEPA RATING
08/01/2005	1.906	36.44	36.22	-0.62%	ORIGINAL SEPA RATING
25/03/2006	2.324	54.38	54.38	0.00%	ORIGINAL SEPA RATING
12/02/2007	2.481	61.88	61.88	0.00%	ORIGINAL SEPA RATING
22/11/2007	2.464	61.05	61.05	0.00%	ORIGINAL SEPA RATING
04/09/2009	2.784	77.32	77.32	0.00%	ORIGINAL SEPA RATING
02/11/2009	3.320	107.60	123.53	14.80%	JBA Rating
11/12/2010	2.922	84.76	84.76	0.00%	ORIGINAL SEPA RATING
14/08/2012	1.707	28.55	28.55	0.00%	ORIGINAL SEPA RATING
23/12/2012	3.344	109.02	125.80	15.39%	JBA Rating
06/02/2014	2.211	49.21	49.21	0.00%	ORIGINAL SEPA RATING
07/10/2014	2.362	56.16	56.16	0.00%	ORIGINAL SEPA RATING
08/01/2016	4.460	183.25	260.30	42.04%	JBA Rating
08/02/2017	2.137	45.92	45.92	0.00%	ORIGINAL SEPA RATING

D Technical Review Certificate

Technical Review Certificate

Project Name	Ellon, Inverurie and Insch FPS	
Project Number	2017s6743	
Project Manager	Caroline Anderton	
Work Carried Out by	Grace Thompson and Briony McIntosh	
Reviewer	David Cameron	
Subject of Review	Peak flow estimates for the Ythan and 4 tributaries	
Date	20 March 2018	
Revision	1.0	
	\AIZ-JBAU-EL-00-CA-HM-0001-Flood-estimate-method-comparison- Ellon-S0-P01.01.xlsx	
	\5.Statistical\Broomies_Stat_Pooling.xlsm	
	\5.Statistical\Fortree_stat_pooling.xlsm	
	\5.Statistical\Hillhead_Stat_Pooling.xlsm	
	\5.Statistical\Modley_Stat_Pooling.xlsm	
	\6.FEH RR	
Documents used in Review	\8.ReFH2	
	N:\2017\Projects\2017s6743 - Dougall Baillie Associates - Ellon, Inverurie, & Insch FPS\AIZ-JBAU-HM\EL\Calcs\AIZ-JBAU-EL-00-CA- HM-0002-Hydrology\5.Statistical\2017s5526 FEH_Spreadsheet_v3.2.6 SCO Ythan_v3.xlsm	
	N:\2017\Projects\2017s6743 - Dougall Baillie Associates - Ellon, Inverurie, & Insch FPS\AIZ-JBAU-HM\EL\Calcs\AIZ-JBAU-EL-00-CA- HM-0002-Hydrology\AIZ-JBAU-EL-00-CA-HM-0001-Flood-estimate- method-comparison-Ellon-S0-P01.02.xlsx	
Applicable Standards or Guidance		
Use the following colour scheme to record recommendations:		
Green – suggestion for improved / good	practice but which is unlikely to change the project outcomes.	
Amber – non-standard method or metho	nd not following guidance but unlikely to have impacted on results	
Red – omission that could make the find	lings subject to challenge and which requires correction/further work.	
SCOPE OF REVIEW:		
Review FEH estimates (FEH RR, ReFH2 with FEH13 and FEH Statistical) for the Ythan and the Broomies, Modley, Hillhead and Fortree Burns (which are tributaries of the Ythan).		
DETAILED REVIEW COMMENTS:		
Suitable approach comparing 3 FEH methods.		
RECOMMENDATIONS:		
The recommended approaches (enhanced single site on the Ythan and FEH RR on the Burns) are suitable but ideally this should be agreed with SEPA before proceeding with further work such as hydraulic modelling design runs.		
The naming of the sites on the FEH Statistical sheets for the Burns only needs to be corrected before they are ncluded in a report. (This will not affect the flow values though).		

This document is classified as Commercial

N:\2017\Projects\2017s6743 - Dougall Baillie Associates - Ellon, Inverurie, & Insch FPS\AIZ-JBAU-HM\EL\Calcs\AIZ-JBAU-EL-00-CA-HM-0002-Hydrology\12.Tech Review\2017s6743 - Technical Review Certificate - Hydrology - Ellon v1.0.docx

www.jbagroup.co.uk www.jbaconsulting.com www.jbarisk.com www.jbaenergy.com

JBA renewable energy

JBA group

PRELIMINARY CERTIFICATE (only required when comments are raised).

In respect of the project design described above, I have carried out a Review and consider the technical output sound, subject to the comments and recommendations listed above. Please inform me when you have considered these comments so that I may complete the Final Certificate.

Signature of Reviewer	
Name of Reviewer	
Date	

	Aspect	Y/N	Comments
	Has the appropriate calculation record	Y	FEH calculation records produced for all statistical
	been completed?		results. The naming of the sites on the FEH
			Statistical sheets for the Burns only needs to be
			corrected before they are included in a report (e.g,.
			Ythan@Broomles Burn should be Broomles
	Liss a method statement been produced?	NI	Burn@Y(nan).
	Dasa the analysis (or an appendixed?		Included as text in report
	report) include a description of the	T	included as text in report
	catchment and its flooding processes?		
era	Are there any unusual features of the	N	No unusual features.
θUé	catchment and how they will be taken into		
Ge	account?		
	Aspect	Revision	Comments
		required?	
		(Y,N,N/A)	
	Has a review of existing data been carried	N	Rating review undertaken for Ellon gauging station.
	out?		Tp estimated at Mill of Keithfield as check on rainfall
			runoff estimates.
	Are flow and level stations present, and	N	Ellon AMAX data extended using regression with
	closed stations as well as current ones?		closed Ardlethen station per 2005s1059.
	Have stations outside the HiFlows-UK	N	Temporary logger for tidal data considered per
	dataset been considered, e.g. temporary		2005\$1059.
0	loggers?	N	SERA data undated and HiElows v6 used
40	series from those in HiElows-I IK if so has	IN	SEFA data updated and this lows volused.
let	this been done?		
f Mi	Is there a potential donor site? Within /	N	Ythan gauged at Ellon. Ardlethen used as donor for
0	outside the reach?		burns as smaller catchment area than Ellon.
ice	Is the data quality reviewed – at a minimum	N	Rating review undertaken at Ellon. HiFlows stations
40	HiFlows-UK classification		used otherwise.
U	Is more detailed review of data and ratings	N	Rating review undertaken at Ellon.
S.	appropriate for this study, has this been		
ем	Carried out?	NI	Included as taxt in report
Ма	nas a historical review of data been carried	IN	included as text in report
Re	Does the report include plots and	N	Include in report
ıta	interpretation of flood peak time series and	IN	
Da	flood event data?		
	Appropriate choice of flow calculation	N	Yes. At gauging stations and at downstream points
	point?		on each burn.
	Has catchment boundary been checked	N	Yes. FEH boundaries adjusted from default.
	and area revised?		-
	What other catchment descriptors have	N	URBEXT updated using national growth.
	been checked - is this appropriate?		
	What method has been chosen?	N	Statistical for Ythan; FEH RR for Burns
1	Is chosen method appropriate?	I N	Yes: statistical for large rural catchment and RR for

This document is classified as Commercial

www.jbagroup.co.uk

N:\2017\Projects\2017s6743 - Dougall Baillie Associates - Ellon, Inverurie, & Insch FPS\AIZ-JBAU-HM\EL\Calcs\AIZ-JBAU-EL-00-CA-HM-0002-Hydrology\12.Tech Review\2017s6743 - Technical Review Certificate - Hydrology - Ellon v1.0.docx

			small catchments.
	Has the standard methodology been adjusted?	Ν	No adjusted.
	QMED checked? Has the revised QMED equation been used (CEH, 2008)?	Ν	Revised method used.
	Has the revised method of data transfer (CEH, 2008) been used?	Ν	Revised method used.
	Choice of donor appropriate?	Ν	Yes. The combined series for Ellon could also potentially have been used, but FEH Statistical is being used as check only for the burns so unlikely to change the final outcome.
	Choice of adjustment factor appropriate?	N	Appropriate: 1.053 Ellon 1.011 Broomies, Fortree, Hillhead, Modley.
þ	Have QMED estimates been checked for consistency with upstream and downstream gauges?	Ν	Ardlethen and Ellon considered.
etho	Local data being used to full potential?	Ν	Yes
el M	Choice of adjustment factor appropriate?	Ν	As above
Statistica	Estimation of growth factor appropriate?	Ν	Appropriate: Ellon: 2.99 Broomies: 2.94 Fortree: 2.92 Hillhead: 2.95 Modely: 2.92
	Growth factor Q2-Q100 is 1.8-3.0	N	Yes (as above)
	Pooling group reviewed and details given?	N	Yes. Burns final pooling group essentially the same which is acceptable given similar sizes and location.
	Has the removal and retention of sites in the pooling group been justified?	Ν	Yes.
	Are there any flood peak records suitable for the derivation of single site growth curves?	Ν	Yes. Ellon and merged Ellon series.
	Has enhanced single site analysis been carried out? (rural sites)	N	Yes at Ellon.
	Has a comparison of the pooled, single site and enhanced growth curves been undertaken?	Ν	SS and ESS compared at Ellon.
	Climate change considered?	Ν	Yes
	Has the standard methodology been adjusted?	N	Standard methods used.
noff	Has FEH rainfall runoff method been used or ReFH?	N	FEH RR and ReFH2 with FEH13 rainfall applied to Burns.
Rainfall Run	Have any parameters been adjusted?	Ν	Parameters not adjusted, but comparison of Tp made at Mill of Keithfield level only site. Tp at this site was v. similar between FEH RR with catchment descriptors and observed Tp. FEH RR with catchment descriptors therefore retained.
	Has lag analysis been undertaken?	Ν	See previous comment.
	Climate change considered?	Ν	Yes
	Have non FEH methods been used for small catchment estimates? If so have these been justified and limitations acknowledged?	Ν	N/A
nall	If the catchment is heavily urbanised (URBEXT2000>0.150)	Ν	N/A
Ś	If there is a significant reservoir influence	Ν	N/A

This document is classified as Commercial

N:\2017\Projects\2017s6743 - Dougall Baillie Associates - Ellon, Inverurie, & Insch FPS\AIZ-JBAU-HM\EL\Calcs\AIZ-JBAU-EL-00-CA-HM-0002-Hydrology\12.Tech Review\2017s6743 - Technical Review Certificate - Hydrology - Ellon v1.0.docx

www.jbagroup.co.uk www.jbaconsulting.com www.jbarisk.com www.jbaenergy.com

JBA renewable energy

_				
		(FARL<0.9, with reservoirs not kept permanently full), and there is inadequate flood peak data available downstream of the reservoirs		
		If the catchment is permeable (SPRHOST<20%), has the statistical method been used, with growth curves adjusted to remove non-flood annual maximum flows?	Ν	N/A
	Ī	Is the catchment is pumped?	N	N/A
		Have results for all methods been summarised for comparison?	N	Yes on spreadsheet and in report.
		Is choice of method justified?	N	Yes.
		Have the design flows been checked for spatial consistency, e.g. at confluences and along reaches?	N	At Ardlethen and Ellon only.
	Checks	Have they been checked against flood peaks in the gauged record, and any longer-term flood history?	N	Flood history considered in report.
	Final C	Have the specific runoff rates been checked for spatial consistency?	N	Broomies and Modley similar and Hillhead and Fortree similar. To be expected given similar drainage patterns.
		Have the results been compared with any from other studies	Ν	Ythan results compared with 2005 and 2010 studies.
		Does the report comment on uncertainty in the design flows?	N	To be included in report.
		Are the assumptions and limitations of the methods acknowledged?	N	To be included in report.

RESPONSE (only required when a Preliminary Certificate is raised)

I have addressed the comments raised under the Preliminary Certificate.

Signature	
Name	Briony McIntosh
Date	22 March 2018

FINAL CERTIFICATE

In respect of the project design described above, I have carried out a Review and consider the technical output sound, and any comments raised under a Preliminary Certificate have been satisfactorily addressed.

Signature of Reviewer	
Name of Reviewer	David Cameron
Date	21 March 2018

This document is classified as Commercial

N:\2017\Projects\2017s6743 - Dougall Baillie Associates - Ellon, Inverurie, & Insch FPS\AIZ-JBAU-HM\EL\Calcs\AIZ-JBAU-EL-00-CA-HM-0002-Hydrology\12.Tech Review\2017s6743 - Technical Review Certificate - Hydrology - Ellon v1.0.docx

JBA

JBA renewable energy

JBA

Photos of the Ellon gauging station provided by Aberdeenshire Council 19 December 2017, originally supplied to the council via Huddle (Iris Krammer, SEPA). Photos believed to have been taken on 11 January 2016.

A: Left bank bypassing and debris accumulation by the RB gauging station

B: Wrack mark and debris accumulation by Ellon gauging station

JBA consulting

JBA consulting

C: View from footbridge by Ellon gauging station

D: SEPA Flood levels and extents at Ellon

Contains Ordnance Survey (OS) Crown copyright and database right 2018

Offices at

Coleshill Doncaster Dublin Edinburgh Exeter Glasgow Haywards Heath Isle of Man Limerick Newcastle upon Tyne Newport Peterborough Saltaire Skipton Tadcaster Thirsk Wallingford Warrington

Registered Office

South Barn Broughton Hall SKIPTON North Yorkshire BD23 3AE United Kingdom

t:+44(0)1756 799919 e:info@jbaconsulting.com

Jeremy Benn Associates Ltd Registered in England

Registered in England 3246693

JBA Group Ltd is certified to: ISO 9001:2015 ISO 14001:2015 OHSAS 18001:2007

Visit our website www.jbaconsulting.com